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Abstract

We use microeconomic theory to describe the inner workings of Constant Function
Market Makers (CFMMs). We show that standard results from consumer theory apply
in this new context, endowing us with powerful tools to characterize the optimal design
of CFMMs. We employ them to analyze the externalities that traders and liquidity
providers exert on each other when interacting through a CFMM. Liquidity providers
reduce the execution costs by flattening the bonding curve on which trades are executed.
Arbitrageurs impose an adverse selection cost on liquidity providers by unfavorably
rebalancing their portfolio. We show that the strengths of these two externalities are
pinned down by the curvature of the bonding curve and are inversely related to each
other, thereby identifying the fundamental economic tradeo� that market designers
have to address.

Keywords: Automated Market Makers, Decentralized Finance, Blockchain, Market Design.
JEL Code: D47, D53.

1 Introduction
Decentralized exchanges enable traders to transact without relinquishing the control of their
assets to a third party. Instead of delegating the execution of their orders to a financial
institution, traders can now rely on smart-contracts. Disintermediation removes the need
for trust and thus holds the promise of lower transaction costs. But this benefit is counter-
balanced by the operational costs of processing transactions through smart-contracts. The
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dominant design of centralized markets, namely limit order books, is not yet a viable op-
tion because it is too cumbersome to be e�ciently handled in a decentralized environment.
This is why leaner protocols called Constant Function Market Makers (CFMMs hereafter)
have risen to prominence, establishing themselves as the main paradigm for decentralized
exchanges.

The traditional approach to foster liquidity relies on professional market makers that
stand ready to process incoming market orders. Automated Market Makers (AMMs here-
after) replace human market makers with algorithms. CFMMs are a subclass of AMMs
whose minimalist design aims at achieving computational e�ciency. They are built around
liquidity pools. The level of inventory or reserves are determined by liquidity providers who
can fill or deplete the pool. New liquidity provisions increase the size of the pool but leave
constant the share of each asset in reserve. Traders, on the other hand, exchange one asset
against another and thus alter the composition of the pool. The rate at which the exchange
is processed corresponds to the market price quoted by the AMM. The main design choice
therefore consists in determining the relative price of each asset as a function of the com-
position of the liquidity pool. A practical solution consists in defining an arbitrary trading
function which depends solely on the reserves, and to ensure that the AMM only accepts
trades that leave the value of the trading function unchanged, hence the name Constant
Function Market Maker.

This simple design meets the two main requirements that a decentralized AMM should
fulfill. First, it fosters market liquidity by guaranteeing that the AMM always quotes a price,
and thus stands ready to process all incoming buy and sell orders. Second, the computational
costs are low because the price only depends on an internal state of the smart-contract,
namely the composition of its reserves. However, besides their practical convenience, little is
known about the properties of CFMMs. What types of market structure and price discovery
do CFMMs generate? More fundamentally, how should CFMMs be fine tuned so as to
maximize the welfare of liquidity providers and traders?

One cannot address these questions without first identifying the tradeo�s involved in the
choice of the trading function. We show in this paper that standard microeconomic theory
sheds a surprisingly powerful light on this issue and, more generally, on the overall design
space of CFMMs.

Considering first the problem of liquidity traders, we establish that it is isomorphic to
the derivation of Hicksian demand. This fundamental insight enables us to apply the whole
apparatus of consumer theory to the study of CFMMs. For instance, we show that the
classical result according to which expansion paths are linear in wealth solely when the
utility function is homothetic implies that the prices quoted by a CFMM are independent of
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its pool size solely when its trading function is homothetic. This theorem drastically reduces
the size of the design space since it suggests that, for most practical applications, designers
can focus on trading functions that are homogenous of degree one.

After having characterized the optimization problem of traders, we turn our attention to
its dual formulation. Again, we leverage similarities with consumer theory. We demonstrate
that the minimal value of the portfolio held by liquidity providers can be derived following the
same steps as the ones involved in the derivation of the expenditure function of consumers.
This finding indicates that the rewards of liquidity providers are given by the solution to the
dual problem. In other words, the two-sided nature of CFMMs is reflected in the structure
of their optimization problems, with the primal capturing the perspective of traders and the
dual that of liquidity providers.

We illustrate this general insight through two results of practical relevance. First, we
show that divergence losses, a concept widely used by liquidity providers to measure their
exposure to adverse selection, are naturally expressed in the dual space because they are
encapsulated in the expenditure function. Second, we prove that the trading set is fully
described by the conjugate of the expenditure function. This theorem provides an intuitive
interpretation for the otherwise opaque trading functions of CFMMs. They can now be
directly constructed from the portfolio value of liquidity providers, making it possible to
build CFMMs for sophisticated financial products.

We use duality theory to quantify and tie together the externalities that traders and
liquidity providers exert on each other. We find that both externalities are a function of
the trading function’s curvature. A steeper trading function increases the marginal cost of
trading but reduces the divergence losses of liquidity providers. Moreover, the externalities
exerted by traders and by liquidity providers are inversely proportional to each other.

To summarize, this paper demonstrates that the economics of CFMMs becomes apparent
when examined through the lens of consumer theory. The similarities are striking as the
unfolding of propositions closely follows that of microeconomic textbooks. Besides them, our
research was also inspired by the seminal work of Angeris and Chitra (2020), Angeris et al.
(2020) and Angeris et al. (2021). They established some but not all the results presented in
this paper. An essential di�erence is that they did so using a methodology rooted in convex
analysis. Hence, our paper can partly be read as a translation of their research program into
a language that is more accessible to economists. However, we believe that our contribution
goes beyond pedagogical benefits since it unveils new economic intuitions and provides a
unified framework for the analysis of CFMMs.
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Related literature

We describe CFMMs as two-sided markets and provide a detailed analysis of their connec-
tion with microeconomic theory. Several recent contributions also analyze the economics of
CFMMs but they do so from a di�erent angle. Schlegel et al. (2022); Bichuch and Feinstein
(2022) provide an axiomatic characterization of CFMMs. Schlegel et al. (2022) find that
trading functions with constant elasticity of substitution fully identify the class of CFMMs
that satisfy the axioms of independence and scale-invariance. Bichuch and Feinstein (2022)
propose axioms that are satisfied by the vast majority of CFMMs. Bartoletti et al. (2021)
provides another axiomatic characterization but from a computer science perspective. Jensen
et al. (2021) analyze constant-product market makers, giving the intuition for some of the
results that this paper proves in general. Park (2021) compares constant-product CFMMs
with traditional market makers. He shows that constant-product CFMM are vulnerable
to sandwich attacks, a form of miner extractable value. Jensen et al. (2021) also analyze
constant-product market makers, giving the intuition for some of the results that this paper
proves in general.

A growing stream of research studies the payo� profile of liquidity providers. Milionis
et al. (2022) and Cartea et al. (2022) quantify the adverse selection cost of liquidity provision.
The costs originating from a totally passive position are called impermanent losses. By
contrast, the costs resulting from a hedged position are called loss-versus-rebalancing (LvR).
Cohen et al. (2023) determine the level of fees needed for liquidity providers to cover their
losses and break even.

Cartea et al. (2022) also quantifies divergence losses for concentrated liquidity CFMMs,
i.e. with liquidity provision restricted to a specified price range. Bergault et al. (2022)
outline a mean-variance analysis of the profitability of liquidity provision for a CFMM that
incorporates external data through a price oracle. To the best of our knowledge, only Goyal
et al. (2022) provide a characterization of optimal trading functions. They propose a convex
optimization framework to design CFMMs that are optimal for a given specification of the
price process of the traded assets.

Another relevant branch of literature studies the platform economy of decentralized ex-
changes. These papers propose variations of a benchmark static (or two-period) model to
study the rents of traders and liquidity providers. Aoyagi (2020) determines the level of
liquidity provision in competing CFMMs assuming both atomistic and strategic liquidity
providers. Aoyagi and Ito (2021) cover instead the competition between a CFMM and a
centralized exchange. Lehar and Parlour (2021); Capponi and Jia (2021) determine the im-
pact of market fundamentals, such as noise versus informed trading, on the rents of liquidity
providers. Using Uniswap and Sushiswap data, they both provide evidence supporting their
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models.

Structure of the paper

Section 2 describes the functioning of CFMMs and explains why they create two-sided mar-
kets. Section 3 applies microeconomic theory to analyze the problem of arbitrageurs and
its implications for the portfolio of liquidity providers. We also provide in this section the
general conditions under which liquidity provision does not a�ect the prices quoted by a
CFMM. Section 4 focuses on the welfare of traders and the externalities exerted by liquid-
ity providers. Section 5 reverses the perspective of the previous section by focusing on the
welfare of liquidity providers and the externalities exerted by traders. Section 6 uses duality
to tie together both sides of the market. Section 7 concludes while the proofs of the main
results are relegated to the Appendices.

2 CFMMs as Two-Sided Markets
This section outlines the functioning of CFMMs and describes the market participants with
whom they interact. A CFMM is a smart contract running on a blockchain. Each CFMM
stores virtual assets’ reserves in a liquidity pool. Based on these reserves, the CFMM performs
two elementary operations: liquidity provision and asset swap.

CFMMs are platforms whose purpose is to connect liquidity providers with liquidity con-
sumers. Liquidity providers (LPs) are the owner of the liquidity pool and constitute the
supply side of the decentralized exchange. They provide the CFMM with its initial reserves
and receive in return LP tokens which represent shares of the liquidity pool. Liquidity
providers can at any time redeem their shares by burning (i.e. destroying) their LP tokens
and receiving a corresponding fraction of the pool’s current reserves. The demand side of the
decentralized exchange is constituted of liquidity consumers. They interact with the CFMM
by supplying some assets and withdrawing others from the pool’s reserves. Thus we will
simply refer to liquidity consumers as traders.

The behavior of each set of participants has a direct impact on the utility of the other
set of participants. Liquidity providers benefit from the participation of traders because
they collect fees that are proportional to the trading volume. Traders benefit from the
participation of liquidity providers as larger reserves translate into lower price slippage.
These network e�ects imply that the decentralized exchanges generated by CFMMs are
two-sided markets.

The interactions between suppliers and consumers is mediated by a trading function,
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U : RN
+ æ R, that maps the reserve vector R œ RN

+ of the N assets held in the liquidity
pool, with components Ri for i œ {1, . . . , N}, to a real number K œ R. The trading function
encodes the set of trades that the CFMM will accept given its current reserves. The trading
function represents the trading set in the same way that utility functions represent preferences
in consumer theory. To underline this analogy, we use U to denote the trading function and
refer to its value as the utility of the CFMM.1

2.1 Asset swap

Given reserves R, the CFMM accepts an asset swap that shifts reserves to R
Õ if and only if

U(RÕ) Ø U(R). The trading set is thus the trading function’s upper-contour set

S(K) ©
Ó
R

Õ œ RN : U(RÕ) Ø K

Ô
(1)

evaluated at K = U(R).
It is convenient to decompose trades into input-output vectors (I, O) œ RN

+ ◊RN
+ . I œ RN

+

is the vector of reserves that a trader inputs into the liquidity pool, whereas O œ RN
+ are

the reserves that the CFMM outputs to the trader. The criterion for trade admissibility in
Eq. (1) can then be stated in terms of netput (net output) vectors � © O ≠ I œ RN as

U(R ≠ �) Ø U (R) . (2)

Unless otherwise stated, we maintain a set of assumptions that guarantee that the trading
function is well-behaved:

Assumption 1. The trading function U is
i Twice-continuously di�erentiable: U œ C2.

ii Strictly increasing: ÒU = (UR1 , UR2 , . . . , URN ) >> 0.2

iii Strictly quasi-concave: If U(R) Ø K and U(RÕ) Ø K,

U

1
–R + (1 ≠ –)RÕ

2
> min

Ó
U(R), U(RÕ)

Ô
for all R ”= R

Õ
, – œ (0, 1).

1An alternative interpretation is to view CFMMs as firms. According to this analogy, trading functions
are transformation functions from production theory. We favor the consumer analogy because it makes the
analysis more transparent.

2Each gradient component is ÒUi = URi © ˆU/ˆRi > 0. For x, y œ RN , the vector inequality x >> y
means xi > yi for all i. Conversely, x > y indicates that xi Ø yi for all i and xi > yi for at least one i. We
assume that vectors are column vectors unless otherwise stated.
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Assumption 1 summarizes standard regularity assumptions for utility functions in con-
sumer theory. Di�erentiability (i) makes the trading function smooth, allowing for di�erential
analysis. Monotonicity (ii) aligns the CFMM’s utility with its reserves, so that the CFMMs
accepts trades that either deepen its reserves or leave them invariant.3 Quasi-concavity (iii)
guarantees that S (K) is a strictly convex set. This implies that the CFMM prefers balanced
reserves over extreme ones: If the CFMM accepts trades that leave reserves R and R

Õ, then
it accepts a trade that leaves reserves at the average of those two. As we will see below, each
of the three assumptions plays an important role in ensuring that a CFMM is well behaved.

Although the trading set includes all the trades which increase the utility of the CFMM,
no rational trader would input more than required. This is why decentralized applications
are configured so that traders leave the CFMM exactly indi�erent between its pre- and post-
trade reserves. We will therefore restrict our attention to trades occurring on the indi�erence
curve reached by the initial reserves, i.e. on the bonding curve defined as

Sb !
U(R)

"
©

Ó
R

Õ œ RN : U(RÕ) = U(R)
Ô

. (3)

Quantity function and spot prices

We can use Eq. (3) to define the terms of an asset swap. Consider a trader submitting to a
CFMM with reserves R a buy request of � © �i > 0 units of asset i in exchange for asset j.
The amount of asset-j input the trader has to pay is determined by the quantity function,
qij(�, R) : R ◊ RN

+ æ R, implicitly defined by:4

U

1
R

�
2

≠ U(R) = 0, (4)

where R
� are the post-trade reserves

R
� © R ≠ �i + qij(�, R)j (5)

with i, j denoting basis vectors.5 The quantity function can be di�erentiated to give the
marginal price charged by the CFMM. Formally, we define the price impact function pij(�, R) ©
D�qij(�, R), so that

qij(�, R) =
⁄ �

0
pij(x, R) dx. (6)

3Monotonicity (ii) is equivalent to the path-deficiency property in Angeris and Chitra (2020).
4Notice that qij(�, R) is also defined for � < 0, which indicates a request to sell asset i. In this case,--qij(�, R)

-- gives the amount of asset-j output that the trader will receive from the CFMM.
5i œ RN is such that ii = 1, i≠i = 0. j is analogous. We will drop indexes ij when clear from the context.
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To further connect with economic theory, a straightforward implicit di�erentiation of Eq. (4)
shows that pij(�, R) is a marginal rate of substitution (MRS):6

pij(�, R) =
---MRSij(R�)

--- , (7)

where MRSij(R�) © ≠URi(R�)/URj (R�) is the slope of the bonding curve measuring the
amount of asset j the CFMM has to receive to compensate a marginal reduction in the
reserves of asset i while maintaining its utility constant.

Multi-asset trade

A CFMM can also allow multi-asset trades. The most general way to formalize them with
Eq. (4) is by replacing �i with a generic output vector O œ RN

+ , and qij(�, R)j with a generic
input vector I œ RN

+ . However, doing so generally leads to a multiplicity of solutions for I

given O. Thus multi-asset trade requires imposing further restrictions on the contract space
in order to be well defined (Angeris et al., 2022). We handle multi-asset trade by considering
composite assets defined by generic basis vectors b, b’ that replace i, j in Eq. (5). With this
interpretation, the analysis of two-assets trades naturally extends to higher dimensions, as
we explain in Section 4.2.

2.2 Liquidity provision

The operations performed by liquidity providers can also be represented as input-output
vectors. Liquidity provision is an operation with I > 0 and O = 0; while liquidity withdrawal
has I = 0 and O > 0.

Most CFMMs advise or require liquidity providers to supply all the N assets simultane-
ously so as to maintain their shares in the pool. As we will see in Section 3, under common
assumptions on the trading function this type of liquidity provision does not alter CFMM
prices and therefore does not generate an arbitrage opportunity. More formally, the liquidity
input has to move reserves from R to R

Õ = –R Ø R, where the scalar – Ø 1 determines the
CFMM utility at the new reserves. Thus the input vector has to be formatted as I = R(–≠1).
In reward for supplying liquidity, the provider receives an amount of newly minted liquidity
tokens that constitutes a share – ≠ 1 of their pre-emission supply. The initial emission of
LP tokens is chosen arbitrarily by most CFMMs.

The CFMM also maintains the composition of the pool when reserves are withdrawn.
This case of negative liquidity provision can be represented as before but with – œ [0, 1].

6The identity is proven by totally di�erentiating U along the bonding curve to obtain URi(R�) d�i +
URj (R�) d�j = 0, showing that the slope of the bonding curve, d�j/ d�i = MRSij(R�).
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By burning a share 1 ≠ – of liquidity tokens in circulation, a liquidity provider receives
O = R(1 ≠ –) assets back from the CFMM, and moves its reserves from R to R

Õ = –R Æ R.

2.3 Analogy with consumer theory

In consumer theory, the impact of a price change divides into a substitution e�ect that moves
consumption along the consumer’s indi�erence curve, and an income e�ect that shifts the
indi�erence curve. By contrast, with CFMMs, the substitution and income channels are split
between two types of market participants: Traders move reserves along the bonding curve
of the CFMM, while liquidity providers shift the bonding curve (see Figure 1). We unfold
the implications of this decomposition in the rest of paper, showing that it sheds a powerful
light on the inner workings of CFMMs.

Some CFMMs implement more sophisticated operations than simple trade or liquidity
provision and withdrawal. Yet, these can be captured by a composition of the two benchmark
operations. For example, trading under transaction fees can be seen as a trade followed by
a liquidity provision since collected fees are directly fed into the liquidity pool, leading to
an upward shift of the bonding curve. Also, non-proportional or partial (e.g. single-sided)
liquidity provision triggers a proportional glide along the bonding curve followed by a shift.

(a) Swap (b) Liquidity provision

Figure 1: Division of CFMM operation among market actors

2.4 Overview of popular CFMMs

Before diving into the mathematical analysis of CFMMs, we survey the trading functions
implemented by the most popular protocols (see also Xu et al. 2023 for an extensive survey
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of existing CFMMs). We restrict our attention to CFMMs that quote prices only as a
function of their reserves. Thus we do not cover recent CFMMs that feed additional data
to their pricing algorithm by implementing on-chain oracles, like DODO, or that implement
concentrated liquidity positions, like Uniswap V3.

Uniswap (Adams et al., 2020)

Uniswap (V2) is by far the most popular CFMM. It was originally deployed on the Ethereum
blockchain. Since then, Uniswap has been replicated by multiple clones on Ethereum as
well as on other blockchains (e.g., Sushiswap on Ethereum, Pancakeswap on BNB Smart
Chain, Serum on Solana). Uniswap’s pools contain pre-defined asset pairs and implement
the constant-product trading function, U : R2

+ æ R, such that

U(R) = R1R2. (8)

Hence a trade is admissible according to Eq. (2) if and only if (R1 ≠ �1) (R2 ≠ �2) Ø R1R2.

Uniswap’s LP tokens are called Uniswap (UNI) tokens. Uniswap allows liquidity providers
to supply liquidity arbitrarily but advises them to perform proportional multi-asset liquidity
provision to avoid arbitrage (see Section 2.2).7 The initial emission of UNI tokens is set at
the geometric mean,

Ô
I1I2, of the initial input of reserves.

Balancer (Martinelli and Mushegian, 2019)

Balancer is a multi-asset generalization of Uniswap. It uses a geometric mean (G3M) trading
function, U : RN

+ æ R+, such that

U(R) =
ŸN

i=1 R
wi
i ; wi œ (0, 1),

ÿN

i=1 wi = 1. (9)

The trading functions of Uniswap and Balancer are both instances of Cobb-Douglas utility
functions. Liquidity provision in Balancer can be both proportional multi-asset provision
and single-asset provision. In single-asset provision, providers are free to supply any asset
individually but pay a trading fee as the CFMM treats this operation as a multi-asset
provision followed by a swap.

7https://docs.uniswap.org/contracts/v2/guides/smart-contract-integration/providing-liquidity.
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MStable (Andersson, 2020)

The MStable CFMM uses a linear trading function, U : RN
+ æ R+, with

U(R) =
ÿN

i=1 Ri. (10)

This constant sum CFMM executes swaps at parity. Hence it is convenient for stablecoin
pools, since stablecoins pegged to the same underlying value are supposed to trade close
to parity. The linear CFMM is not practical because, due to its linearity, arbitrageurs can
profit from draining reserves of some asset to zero, thereby preventing other liquidity traders
to buy them (see Section 4.2). However, linear trading functions can have a meaningful use
when mixed with other functional forms, as in the next CFMM.

Curve (Egorov, 2019a,b)

Curve (previously known as StableSwap) mixes a linear and a geometric-mean trading func-
tion.8 The CFMM’s utility is set to simultaneously satisfy qN

i Ri = U and rN
i Ri = (U/N)N .

Multiplying the linear trading function by ‰(U, R)UN≠1 and adding both sides of each iden-
tity gives the implicit equation of Curve’s trading function, U : RN

+ æ R+ such that

‰(R, U) U
N≠1 ÿN

i=1 Ri +
ŸN

i=1 Ri = ‰(R, U) U
N +

A
U

N

BN

. (11)

The leverage ‰(U, R) is a 0-homogeneous (scale free) function that gives the weight on the
linear component. It turns Curve into a geometric CFMM for ‰(U, R) = 0 and into a
linear one for ‰(U, R) æ Œ. The leverage is multiplied by U

N≠1 so that the linear and the
geometric component are measured in the same units of utility. The implicit bonding curve
originating from Eq. (11) is an hyperbolic-like function, similar to the ones used by Uniswap
and Balancer, with a flat central region and asymptotes along each R-axis.

Curve adjusts the leverage dynamically as a function of the reserves:9

‰(R, U) = A‰0(R, U), ‰0(R, U) ©
rN

i=1 Ri

(U/N)N
in Curve V1;

‰(R, U) = A‰0(R, U) “
2

“ + 1 ≠ K0
in Curve V2.

(12)

The parameter A œ R+ is called the amplification coe�cient. It controls the flatness of the
8Port and Tiruviluamala present a general technique to mix linear and geometric trading functions.
9An alternative formulation for Curve V1 and V2’s implicit equation follows by plugging the value of

‰(R, U) into Eq. (11): ANN
qN

i=1 Ri + U = UANN + UN+1/
NN

rN
i=1 Ri.
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bonding curve around the 45-degree line. The larger is A, the wider is the central plateau
of the curve. “ œ R+ controls the steepness of tails by stretching the bonding curve towards
the axes when increased (see Fig. 2).

Figure 2: Impact of parameters on Curve’s bonding curves

Yieldspace (Niemerg et al., 2020)

Yieldspace uses a constant power sum trading function, U : R2
+ æ R+, with

U(R) = R
fl
1 + R

fl
2, fl œ (≠Œ, 1]. (13)

This trading function converges to constant product for fl æ 0, and becomes linear at fl = 1.
For fl æ ≠Œ, U(R) converges to a Leontief trading function U(R) = min (R1, R2). In this
limit, the CFMM has the bizarre behavior of allowing only trades that switch the reserves
of the two assets.10 That is, assuming R1 = min (R1, R2), only � = (R2 ≠ R1) · (1, ≠1) is an
admissible trade. An immediate multi-asset generalization of the constant power sum is the
constant elasticity of substitution (CES) trading function

U(R) =
Q

a
Nÿ

i=1
R

fl
i

R

b

1
fl

, fl œ (≠Œ, 1). (14)

10In our notation, the symbol “·” denotes the inner product among two vectors. Conversely, two variables
next to each other indicate multiplication by a scalar or matrix product.
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To the best of our knowledge, this specification has not yet been implemented for N > 2.

3 No-Arbitrage Equilibrium
The first question raised by decentralized exchanges is whether they enable discovery of
fundamental prices. Given that CFMMs coexist with centralized exchanges which update
their quotes at a much higher frequency, it is reasonable to assume that traders observe
reference prices P œ RN

+ for the CFMM’s assets. Arbitrageurs can therefore maximize their
profits from trading between the CFMM and the centralized market by solving

max
�

P · � s.t. U (R ≠ �) Ø K. (15)

Problem (15) is not yet in a standard form because it depends on the net trade �. However,
observing that the arbitrageur’s profit is given by

P · � = P ·
1
R ≠ R

Õ
2

= P · R ≠ P · R
Õ
, (16)

and that P · R is fixed, we infer that the arbitrage problem is equivalent to

min
RÕ

P · R
Õ

s.t. U

1
R

Õ
2

Ø K. (AP)

Two insights follow from formulation (AP) of the arbitrage problem. First, arbitrage
profits are maximized when the post-arbitrage value of the pool is minimized. Hence, the
incentives of arbitrageurs are opposite to those of liquidity providers. Second, the arbi-
trageur’s problem is isomorphic to the expenditure minimization problem (EMP) of con-
sumers. Thanks to this similarity, an arsenal of established results from consumer theory
readily characterizes the solution to the arbitrage problem. Most importantly, it follows
that the reserves that solve (AP) are given by the Hicksian demand of the corresponding
consumer problem, and liquidity providers’ portfolio value of holding the equilibrium re-
serves in the liquidity pool is described by the related expenditure function. For this reason
we refer to h(P, K) as the vector of Hicksian reserves, and denote their portfolio value by
V (P, K) = P · h(P, K). These two quantities are formally defined as

h(P, K) = arg min
R

)
P · R| U (R) Ø K

*
, (17)

V (P, K) = min
R

)
P · R| U (R) Ø K

*
= P · h(P, K). (18)

We will refresh these concepts and show exactly how they relate to (AP) in the next para-
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graphs, dropping the notation K when irrelevant or clear from the context.

3.1 CFMMs as decentralized price oracles

We are now in a position to derive the prices that should be quoted by the CFMM to reveal
the reference values of its assets. When price revelation occurs, the CFMM is said to act
as a decentralized price oracle. E�cient quotation follows from another well known result in
consumer theory according to which, at the solution R = h(P, K) of (AP), the gradient ÒU

is proportional to the price vector. That is,

P = ⁄ÒU (R) , (19)

where U(R) = K and ⁄ œ R+ is a scaling constant that depends on the choice of numéraire.
Assumption 1 ensures that h(P, K) is well-defined, unique, and continuous in P and K.
Moreover, condition (19) is both necessary and su�cient for a constrained minimum.

There are two ways to think about Eq. (19). First, it defines how relative prices should
be quoted by the CFMM to prevent arbitrage, namely as ratios of marginal utilities as in
Eq. (7). Second, it guarantees that arbitrageurs bring each CFMM spot price back in line
with the reference price. In other words, arbitrageurs synchronize on-chain and o�-chain
data, making the CFMM a reliable price oracle.

The decentralized oracle property is the combination of the two above considerations.
Using the handy notation pij(R) © pij(0, R) to denote CFMM spot prices, it reads:11

pij(R) = URi(R)
URj (R) = Pi

Pj
. (20)

3.2 Basic properties of Hicksian reserves and portfolio value

Consumer theory connects Hicksian reserves to their shares in the portfolio value. It is well
known that the Hicksian reserves of the Cobb-Douglas trading function in Eq. (9) satisfy

Pihi(P, K) = wiV (P, K). (21)

The exponents wi are therefore the share of portfolio value that Balancer’s liquidity providers
obtain from the reserves of asset i. A similar relationship establishes that, for the CES utility

11Here pij(R) is the CFMM spot price, while pij(0, R) is the price impact function in Eq. (7) evaluated
at � = 0. They are di�erent objects: pij(R) gives the CFMM price as a function of equilibrium reserves;
pij(�, R) gives the updated CFMM price as a function of the purchase � of asset i, given reserves R.
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in Eq. (14),

Pihi(P, K) = P
fl/(fl≠1)
i

qN
j=1 P

fl/(fl≠1)
j

V (P, K).

Hence asset i’s share of the portfolio value is now an increasing function of its price. The
portfolio value of a linear CFMM comes instead only from the cheapest asset, so that
V (P, K) = K min(P ). This is the result of arbitrageurs fully draining the reserves of the
most valuable asset.

More generally, for CFMMs that satisfy Assumption 1, standard results (see, for instance,
Mas-Colell et al. 1995) ensure that:

Proposition 1. The Hicksian reserves h(P, K) is: (i) 0-homogeneous in P ; (ii) increasing
in K (DKh(P, K) Ø 0).

Proposition 2. The portfolio value V (P, K) satisfies: (i) 1-homogeneity in P ; (ii)
DP V (P, K) Ø 0; (iii) DKV (P, K) > 0; (iv) continuity in P and K.

The homogeneity translates into h(·) being a function of relative, rather than absolute,
prices and V scaling linearly with the price vector. The signs of the derivatives above are
all very natural: higher utility requires more reserves, and so portfolios that correspond to
higher utility are worth more. The continuity of V is inherited from the smoothness of U .
Notice that we do not describe DP h(·) at this stage. Doing so requires a deeper analysis of
the o�-equilibrium impact of arbitrage, which we perform later in Section 5.

3.3 CFMM equivalence under monotonic transformation

We have seen in Section 2.4 that CFMMs come in all shapes and sizes. However, their
diversity is more apparent than real. It can be trimmed down with the help, once again, of
consumer theory. One of the fundamental insight of utility representation is that functional
forms matter only to the extent that they capture ordinal preferences. Monotonic transfor-
mations are therefore irrelevant for utility functions and, by extension, for trading functions.
Concretely, consider two CFMMs with trading functions U1 and U2. If there exists a mono-
tonic transformation f such that U1 = f ¶ U2, then the two CFMMs are equivalent. For
instance, let us compare Uniswap’s trading function UA = R1R2 with the trading function
of an equally-weighted Balancer pool, UB = R

1/2
1 R

1/2
2 . Since UB =

Ô
UA, or UB = f ¶ UA

with f (x) =
Ô

x, we can conclude that the two CFMMs are equivalent. In Appendix B, we
formally show that:

Example 1. Uniswap and Balancer with N = 2 and w1 = w2 = 1/2 are equivalent CFMMs.
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This equivalence combined with Eq. (21) shows that the portfolio value of Uniswap’s liq-
uidity providers is evenly split among the two assets. Going beyond the Uniswap-Balancer
analogy, one can show that Balancer is also equivalent to a CFMM that uses the exp-log trad-
ing function U(R) = exp(qn

i=1 wi log(Ri)), and that N -assets generalizations of Yieldspace
(Eq. 13) are equivalent to the CES CFMMs in Eq. (14) for fl Ø 0.

3.4 Price neutral liquidity provision

The design space can be further narrowed down by requiring that liquidity providers do not
impact the prices quoted by the AMM. This restriction is natural since it prevents liquidity
provision from scrambling the price discovery process. The necessary condition has long been
established in consumer theory where it is common to focus on homothetic preferences so as
to ensure that consumers with di�erent incomes demand goods in the same proportions, as
long as they are facing the same relative prices. Then the income expansion path of demand
becomes linear because the slope of the indi�erence curves stays constant along rays in
RN originating at 0. The implication for CFMMs is that their spot price depends on the
composition and not on the size of the pool solely when the trading function is homothetic.
Then, and only then, liquidity provision does not create new arbitrage opportunities by
tampering with the spot price (see Figure 3).

Figure 3: Bonding curves of an homothetic trading function

A trading function is homothetic when it is of the form U = f ¶u, where f is an increasing,
monotonic function and u is a 1-homogenous trading function. Since we have shown that
monotonic transformation are immaterial for the behavior of CFMMs, we can conclude that
the class of CFMMs whose trading functions are homogenous of degree one encompasses
all the CFMMs whose prices are not impacted by liquidity provision. Imposing this simple
restriction therefore results in a dramatic reduction of the design space.
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Proposition 3. CFMM prices are invariant to liquidity provision if and only if U is ho-
mothetic. Formally, for – œ R, D–pij(–R) = 0 if and only if U = f ¶ u with f monotone
increasing and u 1-homogeneous.

Proof in Appendix A.
All the CFMMs listed in Section 2.4 are homothetic. Curve is the only CFMM for

which homotheticity is not obvious but we show in Appendix B that Curve is indeed 1-
homogeneous.

Example 2. The trading function of Curve is 1-homogeneous.

4 Traders’ Side of the Market
Now that we have established the general structure and properties of CFMMs, we turn our
attention to the description of each side of their marketplaces, pinpointing the externalities
that connect them. This section explains why the cost for traders of interacting with a
CFMM is encapsulated by its price slippage. We then show that liquidity providers exert a
positive externality on traders when the price slippage decreases in the size of the liquidity
pool. We provide formal conditions under which this statement is true so that traders really
benefit from the participation of liquidity providers.

4.1 Cost of trading and price slippage

The cost of buying � units of asset i with asset j is given by the di�erence between the
actual transfer and the one that would have prevailed in a market with fixed execution price:

C(R�
, R) = qij(�, R) ≠ pij(0, R)�, (22)

where qij and pij are the quantity and price impact functions defined in Eqs. (6) and (7),
while the argument (R�

, R) indicates that the reserves moved from R to R
� as defined in

Eq. (5).12 According to Eq. (6), the cost of trading is equal to the (total) price slippage

C(R�
, R) =

⁄ �

0

Ë
pij(x, R) ≠ pij(0, R)

È
dx.

We leverage this connection to focus on slippage in order to characterize the cost of trading.
12We use (R�, R) instead of (�, R) because it underlines the connection between the cost functions of

traders and of liquidity providers covered in Section 6.
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4.2 Slippage and CFMM curvature

In this subsection, we prove that the CFMMs that satisfy Assumption 1 have strictly in-
creasing slippage, so that Dxpij(x, R) > 0. In other words, qij(�, R) is strictly increasing
and convex in � for all R.

Our result follows by analogy with the property that a quasi-concave utility function ex-
presses the preferences of an agent with Diminishing Marginal Rates of Substitution (DMRS)
in consumption, resulting in convex preferences (Arrow and Enthoven, 1961). When we re-
place the consumer with a CFMM, convex preferences translate into convex trading sets,
and DMRS into positive price slippage for any swap among composite assets generated by
linear combinations of the base assets of the liquidity pool.

For simplicity, consider first a two-assets pool. The equivalence between slippage and
quasi-concavity in this case follows from decomposing the curvature of the bonding curve at
reserves R

�, given by sij(R�) © D�pij(�, R), into

sij(R�) = ≠

Q

cca
URiRiU

2
Rj

≠ 2URiRj URiURj + URjRj U
2
Ri1

URj

23

R

ddb

--------
R=R�

> 0, (23)

The expression in parenthesis in Eq. (23) is exactly D�MRSij(R�). Thus, owing to DMRS,
sij(R�) > 0 for all � and R.

Lemma 1. A two-asset CFMM exhibits increasing price slippage if and only if the trading
function is strictly quasi-concave.

Proof in Appendix A.
We provide additional details on the equivalence between DMRS and quasi-concavity in

Appendix D.1. For a generic N -asset CFMM, quasi-concavity becomes apparent when we
define a trading function over pairs of linearly-independent (i.e. non proportional) composite
assets b, bÕ œ RN with reserves Rb, RbÕ œ R. Linear-independence is needed to consider the
two composite assets as distinct, so that b and bÕ form an orthogonal basis for the swap.
The trading function so constructed, ÂU : R2 ◊ RN ◊ RN æ R, is defined as

ÂU(Rb, RbÕ ; b, bÕ) = U(Rbb + RbÕbÕ), with b ”= –bÕ
, and – œ R \ {0}. (24)

Using ÂU we can generalize the concept of quasi-concavity to more than two assets since
Arrow and Enthoven (1961) have shown that U is quasi-concave if and only if ÂU is quasi-
concave for all (linearly-independent) assets (b, bÕ) œ RN

+ ◊ RN .

18



Proposition 4. A CFMM exhibits increasing price slippage among composite assets if and
only if the trading function is strictly quasi-concave.

An alternative and more common way to test for quasi-concavity of a function with N Ø 3
arguments is by studying the sign of the principal minors of its bordered Hessian.13 The
two approaches are equivalent, although the method we propose has a direct economic in-
terpretation when applied to CFMMs: Identifying quasi-concavity coincides with identifying
positive price slippage in the trading of composite assets.

Restricting Proposition 4 to basis vectors b = i, b’ = j immediately gives the most
relevant application of quasi-concavity in practice:

Corollary 1. A CFMM exhibits increasing price slippage among base assets if and only if
ÂU in Eq. (24) is quasi-concave for all basis vectors b = i, b’ = j.

Infinite liquidity

(a) Depletable CFMM (b) Non-depletable CFMM

Figure 4: Infinite liquidity and asymptotes of the bonding curve

Slippage is an inconvenience for traders but, as we will see in Section 6.2, it is also a
necessary defense mechanism for the CFMM. Besides reducing arbitrageurs’ incentives to
trade against liquidity providers, slippage can guarantee the property known as ‘infinite
liquidity’ in practitioners’ jargon. That is, slippage can preclude traders from exhausting all
reserves, thereby ensuring that the CFMM always remains ready to process incoming orders.
For this to be the case, strict quasi-concavity has to be complemented with the property
that slippage becomes infinite when the reserve of any of the traded assets nears zero:

Lemma 2. The CFMM’s reserves cannot be drained if

lim
�iæRi

---MRSij(R�)
--- = +Œ, for all ij. (25)

13This is also known as the determinant criterion: U is quasi-concave if and only if the (≠1)r|D̄2
rU | Ø 0

for r = 1, 2, . . . , N , where D̄2
rU is the r-th principal minor of the bordered Hessian of U .
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Eq. (25) is a variant of the Inada condition. It essentially requires that the bonding
curve has asymptotes along the axis of each asset pair, as in Fig. 4b. By contrast, bonding
curves such as those in Fig. 4a correspond to CFMMs that can be completely drained of
their reserves.

4.3 Network e�ect of liquidity provision on trade

The results derived in the previous subsection allow us to characterize how the cost of trading
C(R�

, R) is a�ected by liquidity provision. We focus on multi-asset proportional liquidity
provisions to homothetic CFMMs since they are by far the most common in practice (see
Sections 2.2 and 3.4). We relegate the more convoluted analysis of single-asset liquidity
provision to Appendix C.

Equilibrium spot prices are preserved under multi-asset provision to an homothetic
CFMM. Thus, liquidity provision has a positive network e�ect on traders whenever pur-
chasing assets at the new reserves costs less inputs than before. Specifically, traders benefit
from a proportional liquidity injection if

qij(�, R) ≠ qij(�, –R) Ø 0, – > 1, (26)

holds for all distinct asset-pairs ij and strictly for at least one ij. Fig. 5 shows an example
where Eq. (26) is satisfied.

Figure 5: E�ect of deepening the pool on the cost of trading

In Appendix A we establish a property which allows us to conclude that liquidity provision
does exert a positive externality on traders for homothetic trading functions under Assump-
tion 1. Namely, we show that homotheticity of the trading function implies 1-homogeneity
of the quantity function, and vice-versa:
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Lemma 3. A trading function U(R) is homothetic if and only if its quantity function
qij(�, R) is 1-homogeneous in (�, R).

Furthermore, it follows from Euler’s theorem that:

Corollary 2. If U if homothetic, then the price impact function pij(�, R) is 0-homogeneous
in (�, R) so that

pij(�, –R) = pij

A
�
–

, R

B

.

In words, buying � in a pool that is deeper by a factor – is equivalent to buying the
smaller quantity �/– at the initial reserves. Thus, under quasi-concavity of the trading
function, pij(�, –R) < pij(�, R) due to Corollary 1, and so, qij(�, –R) being determined
through integration of the marginal price, we have qij(�, –R) < qij(�, R).

Proposition 5. If the trading function U is homothetic and strictly quasi-concave, liquidity
provision reduces the cost of trading; i.e. the inequalities in Eq. (26) hold strictly for all asset
pairs.

Proof in Appendix A.

5 Liquidity Providers’ Side of the Market
While the previous section focused on the externalities a�ecting traders, we now turn our
attention to liquidity providers. In centralized markets managed via limit order books, liq-
uidity providers bear an adverse selection cost (Glosten and Milgrom, 1985). CFMMs are no
exception. We have shown in Section 3 that arbitrage opportunities harm liquidity providers
because arbitrageurs replace appreciating assets with depreciating ones. To quantify the im-
pact of arbitrage, new analytical tools are needed. It turns out that the e�ect of arbitrage on
the portfolio value of liquidity providers is more conveniently studied in the dual space of the
arbitrage problem. The benefit of this shift of perspective is intuitive since the preferences
of liquidity providers are not expressed by the trading function but rather by the monetary
value encoded in its supporting hyperplanes. Moreover, formulating our analysis in the dual
space does not entail any loss of information because the Hicksian reserves can be derived
from the portfolio value function through Shephard’s Lemma:14

14In consumer theory, Shephard’s Lemma is typically stated assuming local non-satiation rather than strict
monotonicity of the utility function. The latter is a stronger assumption.
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Proposition 6. (Shephard’s Lemma) Suppose that U : RN
+ æ R is a continuous, strictly

increasing, and strictly quasi-concave trading function. Then, for all P œ Rn
++ and K œ R,

h (P, K) = ÒP V (P, K) , (27)

where h (P, K) and V (P, K) are the Hicksian reserves and their portfolio value, defined in
Eqs. (17) and (18).

Furthermore, according to Eq. (27), twice-di�erentiation of the portfolio value with re-
spect to P yields the impact of price movements on equilibrium reserves. The resulting
Hessian is the Slutsky matrix which encapsulates the substitution e�ects of a change in
prices on consumption.

Corollary 3. The price derivative of the Hicksian reserves are given by the Slutsky matrix:
D

2
P V (·, K) = DP h(·, K).

We refer to the negative of the ij-element of the Slutsky matrix

¸ij(P, K) © ≠D
2
P Vij(·, K) = ≠ˆhi(P, K)/ˆPj (28)

as the liquidity of asset i with respect to the price of asset j. Liquidity is a standard concept
to express how many units of Ri the CFMM can sell in response to a marginal change in
Pj (Goyal et al., 2022; Milionis et al., 2022). This interpretation holds for ¸ij(P, K) Ø 0.
Similarly, in the case of negative liquidity, with ¸ij(P, K) Æ 0,

---¸ij(P, K)
--- gives the amount of

Ri that the CFMM can buy in response to a marginal change in Pj. Large values of ¸ij(P, K)
also indicate that the CFMM can sell (or buy) many reserves without altering substantially
its internal spot prices, thereby remaining synchronized with the reference market prices.
Besides describing how reserves change with arbitrage, we will see in Section 6.2 that liquidity
connects the perspectives of liquidity providers and traders.

5.1 Liquidity and concavity of portfolio value

The concavity of the portfolio value quantifies the exposure to adverse selection of liquidity
providers. Technically, V (P, K) is concave if, given a pair of distinct prices, the portfolio
value evaluated at the average price is higher than the average portfolio value at each separate
price:

V (–P + (1 ≠ –)P Õ
, K) Ø –V (P, K) + (1 ≠ –)V (P Õ

, K), for all P, P
Õ
, and – œ [0, 1]. (29)
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We can interpret Eq. (29) as comparing the portfolio value at the average prices to the
expected value of the portfolio resulting from a distribution that returns P with probability
– and P

Õ with probability 1 ≠ –. Intuitively, the inequality in Eq. (29) holds because
the arbitrageur can re-optimize reserves at each price level, generating a profit for herself
and a corresponding loss for the liquidity providers. Hence the expected portfolio value
over multiple prices should be lower than the portfolio value at the fixed average price.
Assumption 1 guarantees that arbitrage is indeed profitable after each price change.

Lemma 4. The portfolio value V (P, K) is concave in P .

Proof in Appendix A.

Liquidity

The combination of Lemma 4, Proposition 6 and Corollary 3 allow us to translate the
concavity of V (P, K) into conditions on the signs and magnitudes of assets’ liquidity:

Proposition 7. D
2
P V (·, K) is negative semi-definite and satisfies D

2
P V (·, K)P = 0.

Proposition 7 essentially implies that prices and reserves move in opposite directions, a
behavior encapsulated in consumer theory by the compensated law of demand.15 In particu-
lar, semi-definite D

2
P V (·, K) and DP h(·, K)P = 0 jointly imply that

¸ii(P, K) Ø 0 for all assets i, and ¸ij(P, K) Æ 0 for at least one j ”= i. (30)

In words, an increase in Pi that alters the no-arbitrage equilibrium allows for liquidity ex-
traction from the reserves of asset i but requires a liquidity injection of at least another asset
j to maintain reserves on the bonding curve.

5.2 Divergence losses

We are now in a position to quantify the cost of adverse selection originating from arbitrage.
Our measure of adverse selection is the profit that the arbitrageur can make from a single
price movement. The cost component originating from arbitrage is known as divergence
loss.16 To quantify it, consider a change in reference market prices from P to P

Õ, assuming
15The law of demand states that marginal changes in prices dP œ RN and reserves dh(P, K) œ R2N satisfy

dP · dh(P, K) = dP · DP h(·, K) dP Æ 0.
16An alternative terminology for the exposure of passive liquidity providers is impermanent loss. Dis-

tinguishing permanent from impermanent losses goes beyond the scope of this paper because it requires a
dynamic model of the price process. This is why we focus on the divergence loss originating from a single
price shock.
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(a) pÕ > p (b) pÕ < p

Figure 6: Divergence losses in the primal space

that the spot prices of the CFMM were initially equal to their reference value P . Before
arbitrageurs consume their arbitrage opportunity, the value of the liquidity pool is P

Õ ·
h(P, K). However, at the new equilibrium, the pool’s resources will be worth V (P Õ

, K) =
P

Õ · h(P Õ
, K) Æ P

Õ · h(P, K). The liquidity providers therefore lose

L(P Õ
, P, K) = P

Õ ·
1
h(P, K) ≠ h(P Õ

, K)
2

Ø 0. (31)

The inequality follows directly from the definition of the portfolio value since it achieves a
global minimum at any given prices. Moreover, Eq. (31) holds with equality at P

Õ = –P (for
– > 0) as h(–P, K) = h(P, K).

Fig. 6 represents the divergence loss in the primal space of the arbitrage problem (AP).
It depicts the loss generated by a change from p to p

Õ in the price of asset 1 measured in
terms of the numéraire asset 2. With this normalization, the price vector is P = (p, 1),
with p = P1/P2 = P1. The divergence loss L reported in orange on the vertical axis is the
di�erence between the ordinate-intercepts of the hyperplanes with slope p

Õ that are tangent to
the bonding curve at h(p, 1) and h(pÕ

, 1). These correspond to the portfolio values of liquidity
providers before and after arbitrage. We now show that representing the divergence loss in
the dual space provides a more compact and transparent representation.

Shephard’s Lemma (Proposition 6), allows us to rewrite the divergence loss as

L

1
P

Õ
, P, K

2
= P

Õ · ÒP V (P, K) ≠ V

1
P

Õ
, K

2
. (32)

As shown in Fig. 7, L (P Õ
, P, K) is the di�erence between the portfolio value and its tangent
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Figure 7: Geometry of divergence losses in the dual space

hyperplane at prices P .17
L (P Õ

, P, K) Ø 0 then immediately follows from the concavity of
the portfolio value established in Proposition 2. Notice that divergence losses are strictly
positive only when relative prices change. Instead, if all prices are scaled by the same factor
–, as on the gray price curve in Fig. 7, then the portfolio value moves along the black dashed
line on the supporting hyperplane. In other words, the portfolio value also scales linearly
from V (P ) to –V (P ), achieving the same values as those on the supporting hyperplane. By
contrast, if relative prices change, as on the red price curve, then the value of V (P Õ) is lower
than that of P

Õ · ÒP V (P ), as can be seen comparing the solid red parabola with the red
dashed line. The divergence loss induced by a price change from P to P

Õ is therefore given
by the vertical distance between points B and C in Fig. 7. Given that divergence losses
are measured by the di�erence between a linear and a concave function, they are convex in
the price displacement. In Appendix A we complement these graphical arguments with an
analytical proof which demonstrates that:

Proposition 8. The divergence losses L(P Õ
, P, K) are positive and convex in P

Õ, with global
minimum 0 at P

Õ = –P , for all – œ R++.

17This representation holds true because of Shephard’s Lemma. Omitting the argument K, the di�erence
between the portfolio value V (P Õ) and its approximation based on its supporting hyperplane at P is given
by

#
V (P ) + ÒP V (P ) · (P Õ ≠ P )

$
≠ V (P Õ), which equals P Õ · ÒP V (P ) ≠ V (P Õ) because Shephard’s Lemma

implies that V (P ) = P · ÒP V (P ).
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Figure 8: Projected divergence losses for a change in the relative price

Fig. 8 reports a 2-dimensional projection of Fig. 7 for the same setting as Fig. 6a. As the
figure shows, a change in relative prices causes a divergence loss for every p

Õ ”= p.

Divergence losses and price-neutral liquidity provision

We have shown in Section 3.4 that the spot prices of an homothetic CFMM are independent
of the overall liquidity or utility K of the CFMM. Interestingly, this property also guarantees
that the divergence loss as a percentage of the portfolio value is independent of K. This
result holds true because, although liquidity provision incentivizes arbitrage by flattening the
curvature of the bonding curve, it also proportionally increases the value of the pool. The
proof follows once again from standard microeconomic theory. It is a direct consequence of
the fact that homothetic trading functions generate separable portfolio value functions and
separable Hicksian reserves.

Lemma 5. V (P, K) and h(P, K) are separable if and only if U is homothetic; that is,
V (P, K) = „ (K) V (P, 1), h(P, K) = „(K)h(P, 1), where „(K) is a positive and increasing
function.

Proof in Appendix A.
Lemma 5 implies that

L(P Õ
, P, K)

V (P, K) = P
Õ ·

!
h(P, K) ≠ h(P Õ

, K)
"

P · h(P, K) = P
Õ ·

!
h(P, 1) ≠ h(P Õ

, 1)
"

P · h(P, 1)

is independent of K when U is homothetic, as „(K) cancels out after being factorized in the
numerator and denominator.

Proposition 9. The rate of divergence losses, L(P Õ
, P, K)/V (P, K), is independent of the

pool size K whenever the CFMM is homothetic.
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5.3 Price manipulation

Besides theoretical considerations, understanding the impact of arbitrage on the value of
the pool and its Hicksian reserves has important practical applications. For instance, the
lending platform Warp Finance has been attacked as a result of a design flaw in its quoting
algorithm (Michel, 2022).

Warp Finance enables borrowing with Uniswap’s liquidity tokens as collateral. The
attack essentially consisted in inflating artificially the price of liquidity tokens by tweaking
the pricing formula applied by Warp Finance. The value of liquidity tokens when reserves
are R and prices are P is simply R · P . Dividing by the total supply of liquidity tokens
gives the value of a token. In spite of its simplicity, implementing this formula is challenging
because one needs to infer the correct values of P and R. Warp Finance used an historic
average to compute P but took actual (non-averaged) reserves from Uniswap to compute R.
This choice created an exploitable vulnerability.

The problem with using current reserves is that an attacker can take a flash loan to
manipulate their value. Provided that Uniswap was at a no-arbitrage equilibrium, the value
of the attacker’s liquidity tokens was at its minimum for the market-determined reserves.
Hence, taking a flash loan to move away from the equilibrium reserves could only increase
the value of the liquidity tokens. The attacker exploited this opportunity by taking a large
loan to inflate the value of her collateral and generate a significant profit. Interestingly, an
alternative DeFi protocol called Alpha Finance addressed this attack by using the Hicksian
reserves instead of the actual ones to compute the price of the liquidity tokens. This episode
therefore illustrates how understanding the economics of CFMMs has relevant implications
for the design of DeFi protocols.

6 Duality in Liquidity Provision and Liquidity Trading
We conclude our analysis by showing that duality ties together the perspectives of traders and
liquidity providers. First, we outline a method for portfolio replication: Given a portfolio
value V (P, K), we explain how to find the trading function U which achieves that value.
Then we build on this result to highlight the fundamental tradeo� connecting the two market
sides of a CFMM. We prove that the externality exerted by liquidity providers on traders is
inversely proportional to the externality exerted by traders on liquidity providers. Moreover,
we show that the size of these externalities is fully determined by the slope of the bonding
curve.
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6.1 Portfolio replication

The construction method for U is equivalent to the procedure for recovering preferences from
expenditures. It relies on the dual-conjugacy connection among portfolio value and trading
set, as first pointed out in the seminal paper by Angeris et al. (2021). The construction of
the portfolio value starts from the negative indicator function of the trading set,

[≠”S(K)] (R) =

Y
__]

__[

0 if R œ S(K)

≠Œ otherwise
, (33)

which di�ers from the standard indicator function ”S(K) (R) in that it returns ≠Œ instead
of Œ whenever R /œ S(K). Given [≠”S(K)], its Fenchel conjugate

Ë
≠”

ú
S(K)

È
(P ) retrieves the

portfolio value:18

Ë
≠”

ú
S(K)

È
(P ) © inf

R

3
P · R ≠

Ë
≠”S(K)

È
(R)

4
= V (P, K). (34)

Notice that duality yields an alternative proof that the portfolio value ”
ú
S(K) is concave in P

since it is the pointwise infimum of a family of linear functions.
Likewise, if S(K) is convex (U is quasi-concave), the Fenchel-Moreau theorem ensures

that the trading set can be recovered from the portfolio value via double conjugation. In
other words, the biconjugate [≠”

úú
S(K)](R) recovers the negative indicator of the trading set:

V
ú(R, K) © inf

P

!
P · R ≠ V (P, K)

"
= [≠”

úú
S(K)](R) = [≠”S(K)] (R) .

To the best of our knowledge, S (K) is convex for all the existing CFMMs so recovery via
dual conjugacy is widely applicable. If S (K) is not convex, biconjugation recovers instead
its convex closure.

Proposition 10. The portfolio value and the (negative) indicator of the trading set are dual
conjugates:

V (P, K) =
Ë
≠”

ú
S(K)

È
(P ), and

Ë
≠”S(K)

È
(R) = V

ú(R, K). (35)

Proof in Appendix A.
We give a practical demonstration of this technique in Appendix B where we explain how

to recover Uniswap’s trading set from its portfolio value function.
18Since [≠”S(K)] is a concave function of P , Eq. (34) uses the concave Fenchel conjugate rather than the

more common convex conjugate, which is defined di�erently. For example, the convex conjugate of ”S(K) is
”ú
S(K) = supP

1
P · R ≠ ”S(K)(R)

2
.
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Example 3. Duality recovers Uniwap’s CFMM from V (P, K) = 2
Ò

K(P1P2).

Angeris et al. (2021) show that the above replication technique can be used to emulate
more sophisticated financial products. For example, they construct a CFMM that replicates
a covered call option or a perpetual American put option.

6.2 Tradeo� between liquidity provision and trading

We now use duality to establish an inverse relation between the sensitivity to shocks of
divergence losses and of trading costs. This finding, by proving that the preferences of
liquidity providers and traders are divergent, opens the way for a characterization of the
Pareto frontier given market fundamentals. For the sake of exposition, we present the tradeo�
for a two-asset pool although the analysis can be generalized.

Consider a 2-asset CFMM with initial reserves R = (Ri, Rj) and initial prices P = (pij, 1),
so that asset j is the numéraire and pij is the relative price of asset i. The expected cost
of buying x units of asset i according to a strategy centered around 0 with variance V(x)
satisfies the approximation

Ex

Ë
C

!
R ≠ xi + q(x, R)j, R

"È
¥ 1

2 V(x) sij(R) (36)

when x is small relative to the CFMM’s reserves. Similarly, the expected divergence loss
induced by a small change y, of mean 0 and variance V(y), in the price of i satisfies19

Ey
#
L (P + yi, P )

$
¥ 1

2 V(y) ¸ii(P ). (37)

We now show that, in equilibrium, sij(R) and ¸ii(P ) are inversely proportional. Thus,
one cannot tune the trading function so as to make traders better o� without simultaneously
making providers worse o�. This is a consequence of the dual nature of equilibrium prices
and reserves, which allows us to treat them as inverse functions of each other.

Specifically, in Appendix D.2 we show that, having fixed a numéraire asset, there exists
by Assumption 1 a unique price vector given by the inverse of the Hicksian reserves h

≠1 :
Sb(K) æ RN

+ , where Sb is the bonding curve defined in Eq. (3). Since the trading set is
convex, the separating hyperplane theorem guarantees that every point on the bonding curve
can be uniquely identified by the slope of a supporting hyperplane. Having defined h

≠1(R) =
19Let Rx and P y denote updated reserves and prices. By Taylor-expanding C (Rx, R) around x = 0,

we get Ex

#
C (Rx, R)

$
= E(x) DxC (R, R) + E(x2)D2

xC (R, R) /2 + o(E(x2)). The first-order term is zero
since E(x) = 0 (and DxC (R, R) = 0). For the second-order term, E(x2)D2

xC (R, R) /2 = V(x)sij(R)/2.
Higher-order terms are negligible if V(x) is small. The reasoning is analogous for Ey

#
L (P y, P )

$
.
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(pij(R), 1), we can use the inverse function theorem to establish that the sensitivities sij(R)
and ¸ii(P ) in Eqs. (36) and (37) are reciprocal of each other.

Proposition 11. At the no-arbitrage equilibrium, slippage and liquidity are reciprocal to
each other:

¸ii(P ) = 1
sij

!
h(P )

" , sij(R) = 1
¸ii(pij(R), 1) .

Proof in Appendix A.
Combining Eqs. (36) and (37) with Proposition 11, we see that the cost of trading is

proportional to the curvature of the bonding curve, captured by the slippage sij(R), whereas
divergence losses are proportional to the liquidity ¸ii(P ) given by the reciprocal of such
curvature. Therefore low curvature trading functions incentivize trading while high curvature
trading functions incentivize liquidity provision. All CFMMs are subject to this fundamental
tradeo�. Hence there cannot be a choice of trading function that dominates others in all
respects.

Fig. 9 illustrates this principle by comparing the impact of a price shock across two
CFMMs with di�erent curvatures. Both panels show the divergence losses resulting from
the response of the arbitrageur. The left-hand side panel uses a convex bonding curve while
the right-hand side panel uses a linear bonding curve. Comparing L(P Õ

, P ) and q(�, R) in
the two panels, one can see that more curvature reduces the divergence loss for liquidity
providers but increases the cost of trading.

Figure 9: Tradeo� between divergence losses and trading costs
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7 Conclusion
We have shown in this paper that standard microeconomic theory sheds a powerful light
on the inner workings and optimal design of CFMMs. First, we explained how the main
properties of CFMMs, such as their ability to provide reliable oracles for o�-chain prices,
naturally follow from established results in consumer theory. Transposing the insights of
consumer theory enabled us to narrow the design space, for instance by showing that only
homothetic trading functions can prevent liquidity providers from scrambling the price signal.

After having established these fundamental results, we used our new tools to gather
deeper insights into the economic externalities connecting traders and liquidity providers.
Focusing first on traders, we provided explicit conditions under which their costs of using
a CFMM are decreasing in the liquidity of the pool. Then, we turned our attention to
liquidity providers, explaining why their divergence losses are decreasing in the curvature
of the bonding curve. Finally, we connected both sides, establishing that the externalities
exerted by liquidity providers and by traders are inversely proportional. This finding has
important implications for the design of CFMMs since it shows that the preferences of traders
are fundamentally divergent from that of liquidity providers: Traders favor CFMMs with low
curvature whereas liquidity providers favor CFMMs with high curvature. The challenge for
the designer therefore consists in identifying the curvature that strikes an optimal balance
between liquidity attraction and fees collection. Solving this mechanism design problem is
beyond the scope of the static setting used in this paper since it requires specifying the law
of motion of prices. We intend to follow this roadmap in future research by leveraging the
apparatus laid-out in our paper and extending it to a dynamic setting.
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A Proofs
Proof of Proposition 3. Let U(R) = f(u(R)). Omitting the argument –R in the last of
the following equalities, we have that20

D–

1
pij(–R)

2
= D–

Q

a URi(–R)
URj (–R)

R

b =

S

WU

1
ÒuRi(–R) · R

2
uRj (–R) ≠

1
ÒuRj (–R) · R

2
uRi(–R)

uRj (–R)2

T

XV

The last expression does not depend on f
2
u since it cancels out from the numerator and the

denominator. By Euler’s Theorem, u 1-homogeneous implies uRi 0-homogeneous for all i,
i.e. ÒuRi(–R) · –R = 0 for all i, which implies ÒuRi(–R) · R = 0 for all i given that – is a
scalar. It follows that the numerator of D–

1
pij(–R)

2
is zero.

Proof of Lemma 1. Applying the quotient rule to compute D�p (�, R), we have

D�p (�, R) = D�

Q

a URi(Ri ≠ �, Rj + q(�; R))
URj (Ri ≠ �, Rj + q(�; R))

R

b

=

1
URiRj p ≠ URiRi

2
URj ≠

1
URjRj p ≠ URjRi

2
URi

U2
Rj

=

Ë
URiRj (URi/URj ) ≠ URiRi

È
URj ≠

Ë
URjRj (URi/URj ) ≠ URjRi

È
URi

U2
Rj

,

with all derivatives evaluated at R
�. Multiplying the numerator and the denominator by

URj yields sij(R�) from Eq. (23), which is positive by the definition of quasi-concavity (see
Appendix D.1).

Proof of Lemma 3. Let us start by proving that the homotheticity of U(R) is su�cient for
having 1-homogeneity in qij(�, R). So assume that U is homothetic. The quantity function
is 1-homogeneous if and only if qij(�, R) = �pij(�, R) + R · ÒR qij(�, R). Rearranging the
terms, we obtain

R · ÒR qij(�, R) = qij(�, R) ≠ �pij(�, R). (38)

The gradient ÒR qij = (ˆqij/ˆR1 . . . , ˆqij/ˆRN) contains the e�ects on the quantity function
20ÒuRi(·) denotes the gradient vector of the i-th partial derivative of u. This should not be confused with

Òui(·), which is the i-th element of the gradient of u.
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of supplying each asset individually. Implicit di�erentiation of Eq. (4) gives each of these
e�ects:

ˆ

ˆRk
qij(�, R) =

URk
(R) ≠ URk

1
R ≠ �i + qij(�, R)j

2

URj

1
R ≠ �i + qij(�, R)j

2 . (39)

Before combining them, it is important to notice that Eq. (39) is invariant under mono-
tone transformation of U . To see this, let U = f ¶ u be a transformation of the trading
function u and let u © u(R), u

� © u

1
R ≠ �i + qij(�, R)j

2
and f

� © f(u�) for brevity:

ˆ

ˆRk
qij(�, R) = ˆ

ˆRk

f(u) ≠ f(u�)
f(u�) =

fuuRk
≠ f

�
u u

�
Rk

f�
u u�

Rj

=
fu

f�
u

uRk
≠ u

�
Rk

u�
Rj

=
uRk

≠ u
�
Rk

u�
Rj

(40)

since fu/f
�
u = 1 follows from di�erentiating both sides of Eq. (4). u produces also the same

qij(�, R) and pij(�, R) as U since these functions are defined on the bonding curve and are
therefore unchanged by a monotone transform.

Now, summation over k of the reserve-weighted e�ects in Eq. (39), taking u as the 1-
homogeneous representation of the trading function, gives

R · ÒR qij(�, R) =
Òu(R) · R ≠ Òu

1
R ≠ �i + qij(�, R)j

2
· R

uRj

1
R ≠ �i + qij(�, R)j

2 . (41)

By Euler’s theorem, the homogeneity of u implies that:

Òu(R) · R = u(R); (42)

Òu

1
R ≠ �i + qij(�, R)j

2
·

1
R ≠ �i + qij(�, R)j

2
= u

1
R ≠ �i + qij(�, R)j

2
= u(R), (43)

as swapping assets keeps the trading function constant. We can then use Eq. (43) to re-
express Òu

1
R ≠ �i + qij(�, R)j

2
·R. Letting R

� © R≠�i+ qij(�, R)j for brevity, we have
that Òu

1
R

�
2

· R
� = Òu

1
R

�
2

· R ≠ � uRi(R�) + qij(�, R) uRj (R�), using the basis vectors
to simplify.21 Thus,

Òu

1
R

�
2

· R = u(R) ≠
Ë
qij(�, R)uRj (R�) ≠ � uRi(R�)

È
. (44)

Combining Eqs. (42) and (44) to simplify Eq. (41) gives exactly Eq. (38) since
uRj (R�)/uRj (R�) = 1 and uRi(R�)/uRj (R�) = pij(�, R).

For the necessary part of the lemma, assume that q(�, R) is 1-homogeneous. This is
21The basis vectors select the i-th and j-th element of the gradient: �uRi(R�) = �

#
i · Òu(R�)

$
,

qij(�, R)uRj (R�) = qij(�, R)
#
j · Òu(R�)

$
.
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possible only if the equalities in Eqs. (42) and (43) (and in turn Eq. (44)) are satisfied,
which require U to be a monotone transformation of a 1-homogeneous function u. Thus
homotheticity is also necessary.

Proof of Proposition 5. Corollary 2 and Eq. (23) imply

qij(�, –R) =
⁄ �

0
pij(x, –R) dx =

⁄ �

0
pij

3
x

–
, R

4
dx <

⁄ �

0
pij (x, R) dx = qij(�, R).

Proof of Lemma 4. Letting P̄ © –P + (1 ≠ –)P Õ,

V (P̄ , K) = –P · h(P̄ , K) + (1 ≠ –)P Õ · h(P̄ , K)

Ø –P · h(P, K) + (1 ≠ –)P Õ · h(P Õ
, K) = –V (P, K) + (1 ≠ –)V (P Õ

, K).

The inequality holds from the definition of h(P, K) in Eq. (17).

Proof of Lemma 5. The separability of h(·) is obvious from the separability of V (·). To
prove the latter, we first show the necessary part of the proposition. U (R) being homothetic,
there exists a strictly increasing transformation such that „

!
U (R)

"
= u (R) is homogenous

of degree one. Hence

V (P, K) = min
R

)
P · R| U (R) Ø K

*
= min

R

)
P · R| u (R) Ø „ (K)

*

= min
R

Y
]

[P · R

-----
u (R)
„ (K) Ø 1

Z
^

\ = „ (K) min
RÕ

I

P · R
Õ
----u

1
R

Õ
2

Ø 1
J

= „ (K) V (P, 1),

where R
Õ © R/„ (K) and the penultimate equality uses the homogeneity of u (R) .

The su�cient part of the proposition assumes that the portfolio value is separable, i.e.
V (P, K) = „ (K) v (P ). By definition

U(R) = max
Ó

K| P · R Ø „ (K) v (P ) for all P œ Rn
+

Ô
,

hence we have

u(R) = „
!
U (R)

"
= max

;
K

Õ
--- P · R Ø K

Õ
v (P ) for all P œ Rn

+

<

with K
Õ © „ (K) . It is clear from the above definition that u(R) is homogenous of degree

one and so U(R) is homothetic.
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Proof of Proposition 8. Di�erentiation yields DP ÕL(P Õ
, P ) = ÒP V (P ; K)≠ÒP ÕV (P Õ; K) =

h(P ; K)≠h(P Õ; K). So L(P Õ
, P ) has critical points at P

Õ = –P , – > 0, since DP ÕL(–P, P ) =
0. Di�erentiating twice, we obtain D

2
P ÕL(P Õ

, P ) = ≠D
2
P ÕV (P Õ; K). Since V is concave in P

Õ,
D

2
P ÕE(P Õ; V ) is negative semi-definite, so ≠D

2
P ÕV (P Õ; K) is positive semi-definite. L(P Õ

, P )
is thus convex with global minimum L(P Õ

, P ) = 0 at P
Õ = –P for all – > 0.

Proof of Proposition 10. We start by showing that the dual representation of the trading
set is the portfolio value. infR

3
P · R ≠

Ë
≠”S(K)

È
(R)

4
is clearly achieved at R œ S(K),

giving [≠”S(K)](R) = 0, as otherwise [≠”S(K)](R) = ≠Œ and so P · R ≠ [≠”S(K)](R) would
diverge to infinity. Thus, we have

Ë
≠”

ú
S(K)

È
(P ) = inf

RœS(K)
P · R = min

RœS(K)
P · R = V (P, K). (45)

To close the dual representation in the other direction, we take the concave conjugate of
V (P, K) = [≠”

ú
S(K)](P ), which is

Ë
≠”

úú
S(K)

È
(R) = inf

P

3
P · R ≠

Ë
≠”

ú
S(K)

È
(P )

4
. (46)

If R œ S (K), then the minimum value of reserves that can generate utility K is by definition
equal to [≠”

ú
S(K)] (P ) = V (P, K), which in turn implies

Ë
≠”

úú
S(K)

È
(R) = 0. Conversely, if

R /œ S (K), [≠”
ú
S(K)] (P ) is equal to +Œ, and so [≠”

úú
S(K)] (R) = ≠Œ. To summarize:

V
ú(R, K) =

Ë
≠”

úú
S(K)

È
(R) =

Y
]

[
0 if R œ S (K)
≠Œ otherwise

,

which is indeed the definition of [≠”S(K)] (R).

Proof of Proposition 11. Suppose that the CFMM is initially in equilibrium with reserves
R at prices P . Appendix D.2 shows that the inverse function h

≠1(R) = (pij(R), 1) is a
well-defined bijection under Assumption 1. Then, by the inverse function theorem, we have
that

sij(R) = ˆpij(R ≠ xi + q(x, R)j)
ˆx

-----
x=0

= ≠
Q

a ˆhi(P + yi)
ˆy

-----
y=0

R

b
≠1

= 1
¸ii(pij(R), 1);

¸ii(P ) = ≠ ˆhi(P + yi)
ˆy

-----
y=0

=
Q

a ˆpij(R ≠ xi + q(x, R)j)
ˆx

-----
x=0

R

b
≠1

= 1
sij(h(P )) .

The sign change after the second equality of both rows occurs because increasing the relative
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price corresponds to reducing the Hicksian reserves and vice-versa.

B Examples
Example 1. The analogy follows from proving that Hicksian reserves and portfolio value
for Uniswap and Balancer are equal.

Uniswap: UA(R) = R1R2. From the optimality condition P = ⁄ÒUA (R) we get R1 =
P2R2, where asset 1 is our numéraire, so that P1 = 1. Reinserting this solution into the
trading function, R1 =

Ò
UA(R)P2, R2 =

Ò
UA(R)/P2, and the portfolio value reads V (P, KA)

= R1 + P2R2 = 2
Ô

KAP2, so that

V (P, KA) = „ (KA)
Ò

P2, where „ (KA) = 2
Ò

KA. (47)

Balancer: UB(R) = rn
i=1 R

wi
i . The optimality condition P = ⁄ÒUB (R) reads

Pi = ⁄
wi

Ri

Ÿn

j=1

1
Rj

2wj = ⁄
wi

Ri
U(R), or Pi

Pj
= wi/Ri

wj/Rj
.

For tractability, we focus on the two-asset case. Setting P1 = 1, we get R1 =
P2R2w1/w2 and so UB(R) = (R1)w1 (R2)w2 =

1
w1
w2

P2R2
2w1 (R2)w2 . It follows that UB(R)

=
1

w1
w2

P2
2w1 (R2)w1+w2 . Now, solving R2 as a function of UB(R) and plugging the result back

into the expression of R1, we get

R2 =
S

UUB(R)
A

w2
w1P2

Bw1
T

V

1
w1+w2

, R1 =
S

UUB(R)
A

w1
w2P2

Bw2
T

V

1
w1+w2

.

The portfolio value is therefore given by

V (P, KB) = R1 + P2R2 = K

1
w1+w2
B

S

U
A

w1P2
w2

Bw2

+
A

w2
w1

Bw1

P
w2
2

T

V

1
w1+w2

= K

1
w1+w2
B

S

U
A

w1
w2

Bw2

+
A

w2
w1

Bw1
T

V P

w2
w1+w2

2

= „ (KB) P

w2
w1+w2

2 , where „ (KB) =
S

U
A

w1
w2

Bw2

+
A

w2
w1

Bw1
T

V K

1
w1+w2
B .

Now, if we set w1 = w2 = 1/2, we get

V (P, KB) = „ (KB)
Ò

P2, where „ (KB) = 2KB.
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Since KB =
Ô

KA (see Eq. 47), Uniswap and Balancer with N = 2 and w1 = w2 = 1/2 are
indeed equivalent.

Example 2. To see that U(R) defined implicitly in Eq. (11) is 1-homogeneous, it is su�cient
to prove homogeneity of

G(R, U) © ‰(R, U)
5
U

N≠1 ÿN

i=1 Ri ≠ U
N

6
+

ŸN

i=1 Ri ≠
A

U

N

BN

.

‰(R, U) in Eq. (12) is clearly 0-homogeneous in (R,U). [UN≠1 qN
i=1 Ri ≠ U

N ] is N -
homogeneous in (R,U), same as rN

i=1 Ri and (U/N)N . So G(R, U) is N -homogeneous in
(R,U), meaning G(–R, –U) = –

N
G(R, U). Thus, U(–R) = –U(R).

Example 3. The concave conjugate for the portfolio value V (P, K) = 2
Ò

K(P1P2) is

V
ú(R, K) = inf

P

3
P1R1 + P2R2 ≠ 2

Ò
K(P1P2)

4
= ≠ sup

P

3
2

Ò
K(P1P2) ≠ (P1R1 + P2R2)

4
.

To compute the conjugate, we need to distinguish two cases. (i) If R1R2 < K, choose
Pi = ⁄/ (2Ri) for ⁄ > 0. Then 2

Ò
K(P1P2) ≠ (P1R1 + P2R2) = ⁄

5Ò
K

R1R2
≠ 1

6
> 0. This

expression diverges to infinity with ⁄, and so V
ú(R, K) = ≠Œ. (ii) If R1R2 Ø K,

P1R1 + P2R2 = 2P1R1 + 2P2R2
2 Ø

Ò
(2P1R1) (2P2R2) = 2

Ò
(R2R1) (P1P2) Ø 2

Ò
K (P1P2),

where the first inequality is an application of the AM-GM inequality. We see that
2

Ò
K(P1P2) ≠ (P1R1 + P2R2) is bounded from above by 0, hence its value is maximized

by letting P1, P2 and thus V
ú(R, K) converge to zero.

To summarize, we have V
ú(R, K) = 0 if R1R2 Ø K; V

ú(R, K) = ≠Œ if R1R2 < K. The
conjugate of the portfolio value is indeed equal to the negative characteristic function of the
trading set V

ú(R, K) = [≠”S(K)] (R).

C Single-Asset Liquidity Provision
We consider a liquidity pool of N Ø 3 assets and suppose that the reserves of one of those
assets increase. When this occurs, the CFMM should make it cheaper to buy that asset and
costlier to sell it. Moreover, trades that do not involve the asset should not be a�ected by its
liquidity provision. An ideal CFMM therefore satisfies these three desiderata of single-asset
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liquidity provision:22

ˆqij(�, R)
ˆRi

Æ 0,
ˆqij(�, R)

ˆRj
Ø 0,

ˆqij(�, R)
ˆRk

= 0 for k ”= i, j, (48)

To see which restrictions on the trading function result from Eq. (48), one can implicitly
di�erentiate qij(�, R) with respect to the reserves of a generic asset k. For an homothetic
trading function U = f ¶ u, where u(R) is 1-homogeneous, we have that

ˆqij(�, R)
ˆRk

= uRk
(R) ≠ uRk

(R�)
uRj (R�) = 1

uRj (R�)

⁄ �

0

Ë
uRkRi(Rx) ≠ uRkRj (Rx)pij(x, R)

È
dx. (49)

with R
x = R ≠ xi + qij(x, R)j (also for x = �), and pij(x, R) = uRi(Rx)/uRj (Rx). The first

equality holds by Eq. (40). The second is an application of the fundamental theorem of cal-
culus. Eq. (49) allows us to achieve the desiderata in Eq. (48) by imposing conditions on the
partial derivatives of the 1-homogeneous representation of the trading function. In particu-
lar, it is su�cient that u jointly satisfies three properties: (i) diminishing marginal utility:
uRiRi Æ 0; (ii) increasing marginal cross-utility: uRiRj Ø 0; (iii) separability: uki/ukj = ui/uj,
which corresponds to DRk

pij(�, R) = 0. Properties (i) and (ii) imply quasi-concavity but
not vice versa. Goldman and Uzawa (1964) prove that (iii) holds for all i ”= j ”= k if and only
if u is a separable function (and U is its monotone transformation); that is, u = qN

i=1 ũi(Ri),
where each function ũi depends solely on Ri. To summarize, we have shown that:

Proposition 12. An homothetic CFMM satisfies the desiderata in Eq. (48) if its 1-
homogeneous representation u is such that uRiRi Æ 0 for all i, uRiRj Ø 0 for all i ”= j,
and uki/ukj = ui/uj for all i ”= j ”= k. Under these conditions, u is quasi-concave and
separable.

D Mathematical Background

D.1 Geometry of quasi-concave functions

We now show that strict quasi-concavity is equivalent to DMRS; i.e. D�MRSij(R�) < 0,
where D�MRSij(R�) is the expression in Eq. (23). Quasi-concavity is what makes negative
the sign to the numerator of D�MRSij(R�) as the denominator, URi(R�), is always positive.
Concretely, a twice-continuously di�erentiable function U is strictly quasi-concave if and only
if its Hessian is negative definite along supporting hyperplanes to its level sets (see Fig. 10).

22The third desideratum is equivalent to the independence axiom in Schlegel et al. (2022).
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That is,23

x · D
2
U x < 0 for all x œ

Ó
RN \ 0 : ÒU · x = 0

Ô
. (50)

Figure 10: Quasi-concavity

The numerator in Eq. (23) satisfies condition Eq. (50) because it corresponds to a
quadratic form of the Hessian D

2
U and of the skew gradient Ò‹

U . The latter rotates
the gradient counter-clockwise by 90 degrees, and it is therefore orthogonal to the gradient.
Precisely, the numerator of Eq. (50) is given by

Ò‹
U · D

2
U Ò‹

U, with Ò‹ =
Q

a≠URj

URi

R

b and D
2
U =

Q

aURiRi URiRj

URiRj URjRj

R

b . (51)

Therefore, by Eq. (50), the numerator in Eq. (23) is negative.
Notice that quasi-concavity defined by Eq. (50) is equivalent to the assumption of posi-

tive Gaussian curvature mentioned by Angeris et al. (2020), as the former holds true when
≠

1
Ò‹

U · D
2
U Ò‹

U

2
/||ÒU ||3 > 0 and vice-versa.

D.2 Duality and invertibility of the Hicksian reserves

To demonstrate rigorously and generally the invertibility of Hicksian reserves under As-
sumption 1, we introduce the concept of superdi�erential and supergradient. For a concave
function f œ RN , a supergradient is a vector g œ RN such that

f(y) Æ f(x) + g · (y ≠ x) for all x, y. (52)
23The quadratic form x · D2U x is equivalent to x€D2Ux, where € denotes transposition. The latter

expression uses two matrix products; the former uses an inner product followed by a matrix product. We
favor the first format to avoid causing confusion with the ‹ symbol in Eq. (51).
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The supergradient makes the left-hand side of Eq. (52) a global over-estimator of f(y) at
each x. The superdi�erential ˆf is the (closed and convex) set of all supergradients of f .
For a singleton superdi�erential, we also let ˆf denote its unique supergradient.

For the negative indicator function, we have that

ˆ[≠”S(K)](R) =
Ó
P œ RN : P · R Æ P · R

Õ
, for all R

Õ œ S(K)
Ô

.

Taking R on the bonding curve, it is clear that ˆ[≠”S(K)](R) gives exactly the prices P (R, K)
that minimize the portfolio value at reserves R. So the superdi�erential is a singleton set
containing the equilibrium prices,

ˆ[≠”S(K)](R) © P (R) = ⁄ · ÒU(R), (53)

where ⁄ is pinned-down by the choice of numéraire. Conversely, the supergradient of the
dual conjugate V (P, K) = [≠”

ú
S(K)](P ) is its gradient, given by the Hicksian reserves:

ˆ[≠”
ú
S(K)](P ) = h(P, K) (54)

Combining Eqs. (53) and (54) we can see that conjugate supergradients are inverse functions
of each other; that is,

ˆ

Ë
≠”

ú
S(K)

È 3
ˆ

Ë
≠”S(K)

È
(R)

4
= R, ˆ

Ë
≠”S(K)

È 3
ˆ

Ë
≠”

ú
S(K)

È
(P )

4
= P,

thereby establishing the existence of the inverse function

h
≠1 : Sb(K) æ RN

, where h
≠1(R) = P (R).
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