
2nd International Conference on
Blockchain Economics, Security
and Protocols

Tokenomics 2020, October 26–27, 2020, Toulouse, France

Edited by

Emmanuelle Anceaume
Christophe Bisière
Matthieu Bouvard
Quentin Bramas
Catherine Casamatta

OASIcs – Vo l . 82 – Tokenomics 2020 www.dagstuh l .de/oas i c s

Editors

Emmanuelle Anceaume
CNRS, IRISA, Rennes, France
Emmanuelle.Anceaume@irisa.fr

Christophe Bisière
Toulouse School of Economics, University Toulouse Capitole, TSM-R, France
christophe.bisiere@tse-fr.eu

Matthieu Bouvard
Toulouse School of Economics, University Toulouse Capitole, TSM-R, France
matthieu.bouvard@tse-fr.eu

Quentin Bramas
ICUBE, University of Strasbourg, France
bramas@unistra.fr

Catherine Casamatta
Toulouse School of Economics, University Toulouse Capitole, TSM-R, France
catherine.casamatta@tse-fr.eu

ACM Classification 2012
Computing methodologies → Distributed algorithms; Security and privacy → Distributed systems security;
Applied computing → Economics

ISBN 978-3-95977-157-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-157-3.

Publication date
February, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.Tokenomics.2020.0
ISBN 978-3-95977-157-3 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0003-4158-149X
mailto:Emmanuelle.Anceaume@irisa.fr
https://orcid.org/0000-0001-8051-077X
mailto:christophe.bisiere@tse-fr.eu
mailto:matthieu.bouvard@tse-fr.eu
https://orcid.org/0000-0003-0612-5616
mailto:bramas@unistra.fr
mailto:catherine.casamatta@tse-fr.eu
https://www.dagstuhl.de/dagpub/978-3-95977-157-3
https://www.dagstuhl.de/dagpub/978-3-95977-157-3
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/OASIcs.Tokenomics.2020.0
https://www.dagstuhl.de/dagpub/978-3-95977-157-3
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

Tokenomics 2020

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and
Catherine Casamatta . 0:vii–0:viii

Tokenomics 2020 Organization
. 0:ix–0:x

Invited Talks

Some Economics of Fintech
Jean Tirole . 1:1–1:1

When Nakamoto Meets Nash: Blockchain Breakthrough Through the Lens of
Game Theory

Ittai Abraham . 2:1–2:1

Digital Currencies as Types
Timothy A. K. Zakian . 3:1–3:1

Regular Papers

On Fairness in Committee-Based Blockchains
Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and
Sara Tucci-Piergiovanni . 4:1–4:15

Decentralization in Open Quorum Systems: Limitative Results for Ripple and
Stellar

Andrea Bracciali, Davide Grossi, and Ronald de Haan . 5:1–5:20

VeriOSS: Using the Blockchain to Foster Bug Bounty Programs
Andrea Canidio, Gabriele Costa, and Letterio Galletta . 6:1–6:14

A Foundation for Ledger Structures
Chad Nester . 7:1–7:13

Parasite Chain Detection in the IOTA Protocol
Andreas Penzkofer, Bartosz Kusmierz, Angelo Capossele, William Sanders, and
Olivia Saa . 8:1–8:18

Implementation Study of Two Verifiable Delay Functions
Vidal Attias, Luigi Vigneri, and Vassil Dimitrov . 9:1–9:14

Short Papers

Revisiting the Liquidity/Risk Trade-Off with Smart Contracts
Vincent Danos, Jean Krivine, and Julien Prat . 10:1–10:5

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine Casamatta

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:vi Contents

Proof of Behavior
Paul-Marie Grollemund, Pascal Lafourcade, Kevin Thiry-Atighehchi, and
Ariane Tichit . 11:1–11:6

Blockguard: Adaptive Blockchain Security
Shishir Rai, Kendric Hood, Mikhail Nesterenko, and Gokarna Sharma 12:1–12:5

Welcome to the Jungle: A Reference Model for Blockchain, DLT and
Smart-Contracts

Julien Hatin, Emmanuel Bertin, Baptiste Hemery, and Nour El Madhoun 13:1–13:5

Preface

This volume includes the published papers of Tokenomics 2020, the second edition of the
International Conference on Blockchain Economics, Security and Protocols.

Tokenomics is an international forum for theory, design, analysis, implementation and
applications of blockchains and smart contracts. The goal of the conference is to bring
together economists, computer science researchers and practitioners working on blockchains
in a unique program featuring outstanding invited talks and academic presentations.

The conference was initially planned on May 11th and 12th, 2020. Due to the COVID-19
pandemic, it eventually took place on October 26th and 27th of the same year at Toulouse
School of Economics (TSE) in an hybrid format with some of the speakers and moderators
presenting in front of an audience in TSE new buidling and the other conference participants
joining through videoconferencing.

For this second edition, there were 45 papers submitted: 12 papers in computer science
(11 as regular papers and 1 as a short paper) and 32 papers in economics. The economics
program committee selected 14 papers for presentation at the conference. The computer
science program committee selected 6 regular papers for presentation at the conference and
publication in this volume. Additionally, 4 submissions were accepted as short papers, for
presentation at the conference and publication in this volume.

In addition to accepted papers, we had the pleasure to welcome four distinguished invited
keynote speakers:

Ittai Abraham, senior researcher at vmware research. Abraham discussed the use of game
theoretical tools into computer science to model blockchains and cryptocurrencies
Long Chen, Secretary-General of the Luohan Academy, an open research institute initiated
by Alibaba, and former Chief Strategy Officer at Ant Financial. Chen gave an overview of
the ongoing changes in financial services driven by progresses in information technologies.
Jean Tirole, Researcher at TSE and 2014 laureate of the Sveriges Riksbank prize in
economic sciences in memory of Alfred Nobel. Tirole discussed the challenges faced by
cryptocurrencies using the framework of economic theory.
Timothy Zakian, Software Engineer, Novi, Facebook. Zakian presented Move, the
programming language developed to implement transactions and smart contracts on the
Libra blockchain.

Together with the computer science contributions gathered in these proceedings, the
papers presented in the economics track tackled a wide range of issues reflecting the vitality of
the research on blockchains and cryptocurrencies in economics. This growing interest reflects
the current and potential impact of blockchain-based applications for consumers, businesses
and governments. It also captures a fundamental feature of blockchains: implementing a
distributed consensus is as much an incentive problem as it is a technological challenge.

A first subset of these papers focuses on the functioning of the blockchain itself. In keeping
with an earlier stream of papers in computer sciences and economics, Ebrahimi, Routledge
and Zetlin-Jones (“Getting Blockchain Incentives Right”) use game theory to analyze miners’
equilibrium strategies under proof of work and the possibility they may fail to ensure
consensus. Amoussou-Guenou, Biais, Potop-Butucaru and Tucci-Piergiovanni (“Rational vs
Byzantine Players in Consensus-based Blockchains”) use a similar game-theoretic toolbox
to analyze the strategies of committee members in a Byzantine Fault Tolerant blockchain.
Garatt and van Oordt (“Why Fixed Costs Matter for Proof-of-Work Based Cryptocurrencies”)
show how miners’ cost structure, notably the existence of sunk equipment costs, affect their
2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine Casamatta

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:viii Preface

incentives to deploy hashpower in response to the cryptocurrency price movements. Finally,
Hinzen, John and Saleh (“Bitcoin’s Fatal Flaw: The Limited Adoption Problem”) model
how the information time lags inherent to fully distributed consensus create a hard technical
constraint on the throughput of permissionless blockchains.

A second set of papers adopts an industrial organization approach to understand the dis-
tinctive features of blockchain-powered businesses. Lyandres (“Product Market Competition
with Crypto Tokens and Smart Contracts”) shows how native tokens and smart contracts
alter the nature of the competition between an incumbent firm and a potential entrant. Cong,
He and Wang (“Token-Based Platform Finance”) combine the industrial organization angle
with corporate finance implications: they evaluate the dual role of tokens as influencing users’
adoption of a platform, and as providing entrepreneurs with a source of funding. Finally,
Bakos and Halaburda (“When Do Smart Contracts and IoT Improve Efficiency? Automated
Execution vs. Increased Information”) draw on contract theory to clarify the capabilities
of smart contracts. In particular, they distinguish between two features of smart contracts,
the expansion of the contracting space thanks to IoT sensors and the automatization of the
contract execution.

Last, a third set of papers approaches tokens from an asset pricing side. Pratt, Danos
and Marcassa (“Reversible and Composable Financial Contracts”) show how the value of
utility tokens can be derived from users’ benefits from immediately accessing the services of a
platform. Dai, Jiang, Kou and Qin (“From Hotelling to Nakamoto: The Economic Meaning of
Bitcoin Mining”) propose a model that relates Bitcoin prices to miners’ decisions to warehouse
or sell the bitcoins they earn by confirming blocks. This model delivers quantitative predictions
and is calibrated to the data. Shams (“The Structure of Cryptocurrency Returns”) studies the
comovement of multiple cryptocurrency prices and empirically connects high correlations to
common demand factors. Finally, Benigno, Schilling and Uhlig (“Cryptocurrencies, Currency
Competition, and the Impossible Trinity”) study the implications of the adoption of a global
cryptocurrency for monetary policies and exchange rates between fiat moneys.

Overall, the breadth of the topics explored by the participants to this conference illustrates
the fruitful interaction between computer science and economics for understanding the
implications of blockchain-based solutions. It also suggests much more ground to cover and
we hope this conference will further stimulate research in this area.

We thank the authors for submitting their work at the conference and the program
committee who worked hard in reviewing papers and giving feedback to the authors.

Catherine, Christophe, Emmanuelle, Matthieu and Quentin

Tokenomics 2020 Organization

General Chairs
Emmanuelle Anceaume, CNRS, Irisa (France)
Christophe Bisière, University Toulouse Capitole, TSE and TSM-R (France)
Matthieu Bouvard, University Toulouse Capitole, TSE and TSM-R (France)
Quentin Bramas, ICUBE, University of Strasbourg (France)
Catherine Casamatta, University Toulouse Capitole, TSE and TSM-R (France)

Program Committee
Computer Science

Emmanuelle Anceaume, CNRS, Irisa (France)
Daniel Augot, INRIA, Ecole Polytechnique (France)
Quentin Bramas, ICUBE, University of Strasbourg (France)
Vincent Danos, CNRS, Ecole Normale Supérieure (France)
Giuseppe Antonio Di Luna, Sapienza University of Rome (Italy)
Antonio Fernández Anta, IMDEA Networks (Spain)
Fabrice Le Fessant, OCaml PRO (France)
Juan A. Garay, Texas A&M University (USA)
Chryssis Georgiou, University of Cyprus (Cyprus)
Vincent Gramoli, The University of Sydney (Australia)
Braham Hamid, IRIT (France)
Maurice Herlihy, Brown University (USA)
Pascal Lafourcade, Université Clermont Auvergne (France)
Mario Larangeira, IOHK, Tokyo Institute of Technology (Japan)
Romaric Ludinard, IMT Atlantique (France)
Maria Potop-Butucaru, Sorbonne Université (France)
Leonardo Querzoni, Sapienza University of Rome (Italy)
François Taiani, Université Rennes 1, Irisa (France)
Sara Tucci-Piergiovanni, CEA LIST (France)
Marko Vukolic, IBM Research - Zurich (Switzerland)
Josef Widder, Interchain Foundation & TU Wien (Austria)

Economics

Bruno Biais, HEC Paris (France)
Christophe Bisière, University Toulouse Capitole, TSE and TSM-R (France)
Matthieu Bouvard, University Toulouse Capitole, TSE and TSM-R (France)
Catherine Casamatta, University Toulouse Capitole, TSE and TSM-R (France)
Jonathan Chiu, Bank of Canada (Canada)
Will Cong, Cornell University, Johnson Graduate School of Management (USA)
Guillaume Haeringer, Baruch College, Zicklin School of Business (USA)
Hanna Halaburda, New York University and Bank of Canada (USA & Canada)
Zhiguo He, University of Chicago, Booth School of Business (USA)
2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine Casamatta

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:x Tokenomics 2020 Organization

Emiliano Pagnotta, Imperial College Business School (U.K.)
Julien Pratt, CNRS and CREST (France)
Linda Shilling, Ecole Polytechnique and CREST (France)
Katrin Tinn, McGill University, Desautels Faculty of Management (Canada)
David Yermack, New York University, Stern School of Business (USA)

Some Economics of Fintech
Jean Tirole
Toulouse School of Economics, France
https://www.tse-fr.eu/fr/people/jean-tirole

Abstract
The contours of digital payments are still in the making. Recent years have seen the emergence
of new instruments best exemplified by public cryptocurrencies like Bitcoin or Big Tech payment
systems like Alipay. These developments in the private sector have in turn fueled discussions and
projects around the creation of central bank digital currencies. Digital currencies have a lot to
offer. They can provide consumers with user-friendly low-cost means of payment and facilitate
the integration of payment systems across borders. They may also offer alternatives in countries
with dysfunctional national monetary systems. On the supply side, private digital currencies can
be a source of funding (e.g., initial coin offerings) and allow businesses to retain consumers and
to collect information. Which form of digital currency will eventually prevail has yet to be seen.
Popular permissionless cryptocurrencies lack in their current form the price stability necessary to
serve as a store of value: accepting a payment in Bitcoin exposes a merchant to costly financial
risk. Stable coins pegged to a central-bank currency and backed by safe collateral are an attempt to
dim excess volatility (e.g., Tether or Libra). But this guarantee creates new challenges: collateral
must be segregated and prudentially supervised to ensure consumer protection. It is unclear which
authority would have the capacity and incentives to provide that supervision for a global digital
currency. More generally, a private global digital currency would raise a range of public policy issues
ranging from tax fraud and money laundering control, to loss of seignorage revenue, impediments to
monetary policy and potential threat to financial stability. In that context, Central Bank Digital
Currencies (CBDC) may provide a solution that combines the convenience of private digital money
with the institutional support of a state. But the scope of a CBDC’s deployment needs to be
carefully calibrated: a CBDC directly held by wholesale or retail depositors would compete with
bank deposits, possibly limiting banks’ ability to engage in their essential function of maturity
transformation through long-term credit. Overall, the deployment of new technologies for payments
has the potential to create meaningful value for consumers. However, technological disruption does
not upend the fundamental economic principles that have shaped our financial systems and its
regulatory framework. Applying these principles may be our best chance to understand the ongoing
Fintech revolution.

2012 ACM Subject Classification Social and professional topics; Social and professional topics →
Economic impact

Keywords and phrases Cryptocurrency, Stable Coin, Central Bank Digital Currency, Fintech,
Financial Regulation

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.1

Category Invited Talk

© Jean Tirole;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 1; pp. 1:1–1:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.tse-fr.eu/fr/people/jean-tirole
https://doi.org/10.4230/OASIcs.Tokenomics.2020.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

When Nakamoto Meets Nash:
Blockchain Breakthrough Through the Lens of
Game Theory
Ittai Abraham
VMware Research, Herzliya, Israel
https://research.vmware.com/researchers/ittai-abraham
iabraham@vmware.com

Abstract
We discuss the deep connections between Blockchain Technology, Computer Science and Economics.
The talk surveys the ways the Blockchain disruption raises fundamental challenges that have a deep
game theoretic nature. We focus on four major open questions:
1. The need for a game theoretic endogenous theory of the utility of Money Systems that can model

friction, fairness, and trust.
2. The need to incentivize trust in both consensus and execution. A need for a game theoretic

theory of Consensus and analogue to Byzantine Fault Tolerance. A need for a game theoretic
framework for scalable validation.

3. The challenge of incentivizing fairness and chain quality. Can we use notions of robust equilibrium
to provide better notions of fairness?

4. The open question of how Blockchains can incentivise welfare. The need for a theory of
Blockchains as public goods.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Theory of
computation → Distributed algorithms

Keywords and phrases Game theory, Consensus, Blockchain

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.2

Category Invited Talk

© Ittai Abraham;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 2; pp. 2:1–2:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://research.vmware.com/researchers/ittai-abraham
mailto:iabraham@vmware.com
https://doi.org/10.4230/OASIcs.Tokenomics.2020.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Digital Currencies as Types
Timothy A. K. Zakian
Novi
https://tzakian.github.io/
tzakian@fb.com

Abstract
Linear types have been well studied since their inception by Girard; a linear value can be moved
from one place to another, but can never be copied or forgotten. From its inception Move – a new
programming language developed to implement custom transactions and smart contracts on the
Libra Blockchain – has had values–or resources–that behave in this linear manner as a central part
of its semantics. On the Libra Blockchain, Move enables significant parts of the Libra protocol,
including the Libra Coins, transaction processing, and validator management. In this talk, we will
look at how different digital assets are represented with Move on the Libra Blockchain.

In the process of exploring the representation of digital assets on-chain in Move, we will revisit
one of the first examples used in the paper that introduced linear logic; that of payments, and
encounter other ideas from programming languages along the way, such as type-indexed data types
and code modularity. We will see how we can leverage these ideas to provide strong guarantees of
key asset properties such as losslessness, value conservation, and explicit representation of an asset,
its currency, and its value.

As we explore the implementation of a digital asset in Move, we will see how, in Move, code is
organized into a number of different modules, with each module consisting of resources and functions
that can be used with the resources defined in that module. This gives rise to a type of strong
encapsulation around the resources defined within a Move module: only functions within the module
that define the resource can create, destroy, or access the fields of that resource.

We will see how representing a digital asset as a resource, coupled with this strong encapsulation,
and privileging the creation and destruction operations within the module means that we can build
a digital asset representation on-chain that is lossless by design: wherever it may go on-chain, such
a digital asset cannot ever be “lost” or accidentally forgotten, and, no new digital assets can be
created on-chain without the correct privileges.

We can then index this digital asset resource that we’ve built in Move by a type-level representation
of each currency in the system to arrive at an explicit static representation of the currency of a
digital asset. This representation statically disallows entire classes of possible issues, such as trying
to combine two assets in different currencies, while still preserving all of the properties that we
previously had, such as losslessness.

With this representation of a digital asset that we have built in Move, we can also test and
verify that the value of the digital assets on-chain are preserved outside of creation and destruction
operations; since the only functions that can change the value of an asset must be defined within
the same module we can heavily test, and in fact verify, that these functions preserve the value of
any digital assets that they may interact with. At the end of this process we arrive at a testable,
verifiable, and explicit representation of a digital asset in Move that is lossless, conserves value, and
represents its currency and value explicitly.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning; Theory of
computation → Linear logic; Theory of computation → Type theory

Keywords and phrases Digital Currencies, Linear Types, Move, Blockchains

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.3

Category Invited Talk

© Timothy A. K. Zakian;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 3; pp. 3:1–3:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://tzakian.github.io/
mailto:tzakian@fb.com
https://doi.org/10.4230/OASIcs.Tokenomics.2020.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

On Fairness in Committee-Based Blockchains
Yackolley Amoussou-Guenou
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Antonella Del Pozzo
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Maria Potop-Butucaru
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Sara Tucci-Piergiovanni
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract
Committee-based blockchains are among the most popular alternatives of proof-of-work based
blockchains, such as Bitcoin. They provide strong consistency (no fork) under classical assumptions,
and avoid using energy-consuming mechanisms to add new blocks in the blockchain. For each block,
these blockchains use a committee that executes Byzantine-fault tolerant distributed consensus to
decide the next block they will add in the blockchain. Unlike Bitcoin, where there is only one creator
per block, in committee-based blockchain any block is cooperatively created. In order to incentivize
committee members to participate in the creation of new blocks, rewarding schemes have to be
designed. In this paper, we study the fairness of rewarding in committee-based blockchains and we
provide necessary and sufficient conditions on the system communication under which it is possible
to have a fair reward mechanism.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases Blockchain, Consensus, Committee, Fairness, Proof-of-Stake, Reward, Selec-
tion

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.4

Acknowledgements The authors thank Ludovic Desmeuzes for his work on the numerical examples.

1 Introduction

The blockchain technology is one of the most appealing technology since its introduction in
the Bitcoin White Paper [31] in 2008. A blockchain is a distributed ledger, where information
are stocked in blocks, and hashes link blocks in order to have a chain structure. Blockchain
systems mostly use proof-of-work, where the first process that solves a crypto-puzzle can add
a new block to the blockchain. First, this technique is highly energy consuming, and second,
it does not ensure consistency, i.e. conserving the chain structure. Forks may happen and
they lead to a tree structure. Some alternatives arisen to avoid at least one of these issues.
For example, proof-of-stake based blockchains, where the probability of being able to add a
block depends on the stake of a process; this alternative solves the energy consumption issue,
but not the consistency one; they are also subject to the nothing-at-stake problem, where
processes try to produce blocks on all the forks to ensure some rewards, and by doing so,
do not resolve the forks. However, in [35], Saleh shows that the nothing-at-stake problem is
mitigated. Other alternatives tackle both issues, for example, committee-based blockchains.
In committee-based blockchains, for each height/block, a committee is selected and that
committee uses a consensus algorithm to decide on the next block to append in the blockchain.
By construction, committee-based blockchains are not subject to nothing-at-stake, since they
ensure consistency (no fork).

© Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 4; pp. 4:1–4:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.Tokenomics.2020.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 On Fairness in Committee-Based Blockchains

To motivate processes to add and maintain the blockchain, rewarding mechanisms are
in place. Because committee members can be faulty, rewarding mechanisms are inherently
more complex to handle and their properties must be studied. Ad minimum, the rewarding
mechanism must be fair, i.e. distributing the rewards in proportion to the merit of participants,
where merit abstracts the notion of effort processes take for the construction of the blockchain
[4], for instance it models the hashing power in Bitcoin.

Informally, we say that a blockchain protocol is fair if any correct process (a process that
followed the protocol throughout the whole execution) that has α fraction of the total merit
in the system will get at least α fraction of the total reward that is given in the system.
Our fairness analysis, in line with Francez’s definition of fairness [16], generally defines the
fairness of protocols based on voting committees (e.g. Byzcoin [27], Hyperledger Fabric
[11], PeerCensus [8], RedBelly [7], SBFT [18], Tendermint [2, 3, 5], etc.), actually studies
fairness by separating the fairness of their selection mechanism and the fairness of their
reward mechanism.

The selection mechanism is in charge of selecting the subset of processes that will
participate to the agreement on the next block to append in the blockchain, while the reward
mechanism defines the way rewards are distributed among processes that participate to the
agreement. We propose a formal definition of fairness of selection mechanisms, and then
we study the fairness of some selection mechanisms. The analysis of the reward mechanism
allowed establishing the following fundamental result and necessary conditions with respect
to the fairness of committee-based blockchains as follows:
There exists a(n) (eventual) fair reward mechanism for committee-based blockchains if and
only if the system is (eventual) synchronous and faulty processes are detectable. (Theorems
11 and 13).

The rest of the paper is organized as follows. In Section 2, we compare the existing
studies of fairness in blockchain systems; in Section 3, we define the system model; in Section
4, we give the basics of committee-based blockchain systems; in Section 5, we study the
fairness in committee-based blockchain systems; in Section 6, we analyze some behaviors and
the impact of the communication model on rewards; and in Section 7, we conclude.

2 Related Work

The closest work in blockchain systems to our fairness study (however very different in its
scope) is the study of the chain-quality. In [17], Garay et al. define the notion of chain-quality
as the proportion of blocks mined by honest miners in any given window; Garay et al. study
the conditions under which during a given window of time, there is a bounded ratio of blocks
in the chain that malicious players produced, over the total blocks in the blockchain. Kiayias
et al. in [25] propose Ourobouros [25] and analyze its chain-quality property. In [33], Pass
and Shi propose a notion of fairness which is an extension of the chain-quality property,
they address one of the vulnerabilities of Bitcoin studied formally in [12, 13]. In [12, 13],
Eyal and Sirer prove that if the adversary controls a coalition of miners holding even a
minority fraction of the total computational power, this coalition can gain twice its share.
Fruitchain [33] overcomes this problem by ensuring that no coalition controlling less than
a majority of the computing power can gain more than a factor 1 + 3δ by not respecting
the protocol, where δ is a parameter of the protocol. We note that in their model, only one
process creates a block in the blockchain, and that process has a reward for the created block.
In [20], Guerraoui and Wang study the effect of the delays of message propagation in Bitcoin,
and they show that in a system of two miners, one can take advantage of the delays and be

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni 4:3

rewarded exponentially more than its share. We extend the definition of [33] for systems
where each block is produced by a subset of processes. This is the case of Tendermint [5] or
Hyperledger Fabric [11] for example, where for each block there is a subset of processes, a
committee that produces that block.

In [22, 21], Gürcan et al. study the fairness from the point of view of the processes that
do not participate to the construction of the blockchain. Herlihy and Moir do a similar
work in [23] where the authors study users’ fairness and consider as an example Tendermint.
Herlihy and Moir discussed how processes with malicious behavior could violate fairness
by choosing transactions, and then they propose modifications to the original Tendermint
to make some violations detectable and accountable. In [29], Lev-Ari et al. study fairness
on transactions in committee-based blockchains with synchronous assumptions by using a
detectable communication abstraction allowing them to identify malicious participants. Our
work does not study fairness in the point of view of users.

Recent works consider the distribution of rewards in proof-of-stake based blockchains. In
[28], Lagaillardie et al. show that even if Tendermint is unfair, the presence of delegators
helps in the growth of the system. In [14], Fanti et al. define equitability, which represents
the evolution of the fraction of total stakes of nodes, in particular, they compute the effect of
so-called compounding where rewards are directly re-invest in stakes. Karakostas et al. define
in [24] egalitarianism. Egalitarianism means that each node, no matter its stake fraction,
wins the election process to append a new block the same amount as everyone. In this work,
we focus on fairness, where nodes with higher merit should get more rewards. Our notion of
fairness is different that egalitarianism, since the goal of egalitarianism is to have all nodes
rewarded the same, no matter their merit.

3 System Model

The system is composed of an infinite set Π = {p1, p2, . . . pi, . . . } of sequential processes; i
is the index of pi. Sequential means that a process executes one step at a time. This does
not prevent it from executing several threads with an appropriate multiplexing. As local
processing time are negligible with respect to message transfer delays, we consider it as being
equal to zero.

Arrival model. We assume a finite arrival model [1], i.e. the system has infinitely many
processes but each run has only finitely many. The size of the set Πρ ⊂ Π of processes that
participate in each system run is not a priori-known. We also consider a finite subset V ⊆ Πρ

of committee members. The set V may change during any system run and its size |V | = n is
a priori known. A process is promoted in V by a selection function. Such selection function
can be based for instance on stakes in proof-of-stake blockchains, or computing power in
proof-of-work blockchains.

Time assumptions on communication. The processes communicate by exchanging messages
through an eventually synchronous network [10]. Eventually Synchronous means that after a
finite unknown time τ there is an a priori unknown bound δ on the message transfer delay.
When τ = 0 and δ is known the network is synchronous.

Failure model. Some processes can exhibit a Byzantine behavior [34] in the system. A
Byzantine process is a process that deviates arbitrarily from the given protocol. We do
not assume any bound on their number in the system, but up to f committee members

Tokenomics 2020

4:4 On Fairness in Committee-Based Blockchains

can exhibit a Byzantine behavior at each point of the execution. A process that exhibits
a Byzantine behavior is called a Byzantine or a faulty process. A process that follows the
given protocol is called correct.

Communication primitives. In the following, we assume the presence of a broadcast
primitive. The primitive broadcast() is a best effort broadcast, which means that when a
correct process broadcasts a value, eventually all the correct processes deliver it. A process pi
receives a broadcast of a message by executing the primitive delivery(). Messages are created
with a digital signature, and we assume that digital signatures are unforgeable, so when a
process pi delivers a message, it knows the process pj that created the message.

4 Committee-based Blockchains

Any committee-based blockchain uses instances of consensus solving a form of repeated
consensus. This way, each committee agrees on a single value to avoid forks. Anceaume et
al. [4] proved that classical distributed consensus is required to avoid forks.

Each correct process outputs an infinite sequence of decisions called the output of the
process. More formally, as described by Delporte-Gallet et al. [9], and generalized to
Byzantine failures in [2], an algorithm implements a repeated consensus if and only if it
satisfies the following properties: (i) Termination: Every correct process has an infinite
output. (ii) Agreement: If the ith value of the output of a correct process is B, and the ith
value of the output of another correct process is B′, then B = B′. (iii) Validity: Each value
in the output of any correct process is valid with respect to a predefined predicate.

Detailed Description of the Algorithm
We denote by B the set of all blocks. A block contains, among other things, a header and a
list of transactions. Let bc ∈ B∗, be a finite sequence of blocks. |bc| is the length (the number
of blocks) of bc. We say that bc is a blockchain if ∀k ∈ N : 0 < k ≤ |bc|, in the header of the
block at position k in bc, there is the hash of the block at position k − 1. If additionally,
the list of transactions in each blocks in the blockchain is valid with respect to the given
application, we say that bc is a valid blockchain. The block at position 0 is the genesis block.
Each process has a non-negative stake, which is the total amount of token it has. ∀h > 0, let
Vh be the set of committee members for the height h. ∀h > 0, we assume that |Vh| = n, the
size of committee member is fixed and equal to n.

The genesis block initializes the blockchain, selects the committee that will produce the
block at position 1, describes how rewards will be distributed among committee members
(which we call the reward mechanism), gives the initial distribution of stakes, and describes
how processes will be selected for being part of committees with respect to the state of the
blockchain (the selection mechanism). These information should be public, and known by
all processes such that with the history of the blockchain, all processes can always compute
deterministically the sets of committee members. This preclude in this work to consider
proof-of-work blockchains (as in Bitcoin) since the computing power of the processes is not
known by all processes nor verifiable.

For a height, processes not in the corresponding committee just wait for the decision from
the committee members. The committee members for that height execute the consensus
algorithm to decide on the block for that height. Once a process decides on a block, it sends
the decided block to the whole network, and moves to the next height. Non-committee
members wait to collect enough times the same decided block from the committee members,

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni 4:5

in order to be tolerant to failures, and then move to the next height. When moving to the
next height, processes wait a certain amount of time to collect more messages from committee
members. These messages are the ones used to reward the previous committees. Intuitively,
if a process receives a decision message for the decided block by a committee member, then
probably that committee member followed the protocol during that height1. This allows
implementing the repeated consensus. In [2], the authors formalized and proved correct
the Tendermint repeated consensus algorithm, an example of committee-based blockchain
protocol.

In this paper, we analyze the fairness of committee-based blockchains as described in the
following section.

5 Fairness of Committee-based Blockchains

Chain Quality and Committee-based Blockchains

In the blockchain literature, chain quality has been defined by [17], and extended by [33], to
study fairness in Bitcoin-like systems. A blockchain system has the property of chain quality
if the proportion of blocks produced by honest processes in any given window, is proportional
to their relative mining power. Intuitively, chain quality ensures that malicious processes do
not produce more blocks than their proportion of mining power. One of the main differences
between Bitcoin-like system and the committee-based blockchains is that in the former,
one process produces a block, whereas in committee-based blockchain, a committee (a set)
of processes produces a block. A committee is not necessarily composed only of correct
processes, but can contain Byzantine or correct processes (with a correctness hypothesis of
having some majority of the members following the protocol). We cannot apply the definition
of chain quality to committee-based blockchain. Instead of defining the fairness with the
blocks, we will define it relative to the proportion of total rewards a process gets.

Informally, we say that a blockchain protocol is fair if any correct process (a process
that followed the protocol) that has a fraction α of the total merit in the system will get
at least α fraction of the total reward that is given in the system. In order to tackle the
fairness of a committee-based blockchain protocol such as HotStuff [36], Hyperledger Fabric
[11], Redbelly [7], SBFT [18] or Tendermint [2, 3, 5], we split the mechanism in two: the
selection mechanism and the reward mechanism. We say that each process has a given
merit, which represents the effort the process is putting to maintain the blockchain, for
instance it can represent the mining power of a process in proof-of-work blockchains, or
the stakes in proof-of-stake blockchains, etc. The selection mechanism selects for each new
height the committee members (the processes that will run the consensus instance) for that
height. The reward mechanism is in charge to distribute rewards to committee members that
produce a new block. Informally, if the selection mechanism is fair, then each process will
become committee member proportionally to its merit, and if the reward mechanism is fair
then for each height, only the correct committee members get a reward. By combining the
two mechanisms, a correct process is rewarded at least a number proportional to its merit
parameter over the infinite execution of the system.

1 That is not true in general, since Byzantine processes, for instance, can send the decided value at the
end without doing anything during the protocol execution.

Tokenomics 2020

4:6 On Fairness in Committee-Based Blockchains

5.1 Selection Mechanism
5.1.1 Definition and Fairness of Selection Mechanisms
In a system where the size of the committee is strictly lower than the number of processes in
the system, there should be a way to select the members of the committees. Always selecting
the same processes is a way to centralize the system. That set of processes can exercise a
power of oligarchy, and add in the blockchain only transactions they want.

Formally, a selection mechanism is the function selection : B+ × N → Πn ∪ ∅, where n
is the size of committees, Π the set of processes, and B+ represents the set of non-empty
blockchains such that if bc is a non-empty blockchain, then:

selection(bc, h) =
{
Vh, if |bc| ≥ h− 1
∅, otherwise ,

where we recall that |bc| means the length of the blockchain bc, and Vh is the set of committee
members for height h.

Some information can be computed and/or stored in the blockchain, for instance the
number of time each process has been committee member, or the stakes of each process that
represents their wealth. The selection mechanism can select, based on these information, for
instance, processes with the highest stakes, or processes that were committee members less
often, or always the same set of processes, etc.

To abstract the notion of effort of a process, we denote by αi(t) ∈ [0, 1] the merit parameter
of pi at time t proportionally to the total merit at time t, such that ∀t,

∑
pi∈Πρ αi(t) = 1.

If ∀t ∈ N,∀i, αi(t) = αi(0), we denote by αi the merit of the process pi. That means that
the merits do not depend on the evolution of the blockchain, nor on its contents. Let vi
be the number of times pi becomes committee member, proportionally to the number of
blocks, so vi ∈ [0, 1]. We propose the following definition of fairness of selection mechanisms
where merits are fixed and do not change with time. The definition allows all processes with
positive merit to be member of committees infinitely often, and with respect to their merit.

I Definition 1 (Fairness of Selection Mechanism). Assume that the blockchain is built infinitely,
so ∀h ≥ 0, there is a block at position h. We say that a selection mechanism is fair if it
respects the following properties:
1. If αi 6= 0 then vi 6= 0; or equivalently, αi 6= 0 =⇒ ∀h ≥ 0,∃h′ ≥ h : pi ∈ Vh′

2. If αi ≥ αj then vi ≥ vj.
Informally, Condition 1 means that each process with a positive merit parameter should
become a committee member infinitely often. Condition 2 means that a process with a low
merit cannot be selected more than a process with a higher merit. Note that this definition
depends only on the merit and not on the behavior of the processes (correct or Byzantine).

A definition of fairness of a generic selection mechanism (that does change over time) is
still an open question, but such definition should encapsulate the Definition 1 as special case.
I Remark 2. If the total number of processes in the system is equal to the size of committees,
then all processes are always selected, so the selection mechanism in that case is trivially
fair, although asking a huge set of processes to run the consensus is not scalable.

5.1.2 Examples of Selection Mechanisms
In this section, we briefly study different possible selection mechanisms. Let us assume that
there areN > n processes during the whole execution of the system and processes cannot enter
nor exit. Let us also assume that merits do not change over time, ∀t ∈ N,∀i, αi(t) = αi(0)
and that all processes have the same merit, ∀i, j ∈ Πρ, αj = αj > 0.

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni 4:7

In the examples below, we consider selection mechanisms that depends on the stakes of
processes, while the merit is fixed and does not depends on the (evolution of) stakes. All
processes are correct, and a committee member is rewarded when the committee it is part
of produces a block. The reward increases the stake of the process. For our analysis, we
further consider that processes are ordered by their stake and their id (public address for
instance). Let us assume that at the beginning of the execution, all processes have the same
amount of stake. Without loss of generality, and up to renaming, consider also that during
the execution, if ∃i, j : i < j such that pi and pj have the same amount of stakes, then pi is
selected before pj .

Select the processes with the highest stake

This selection mechanism works as follows: for any height h, with respect to the blockchain
up to height h− 1, the n processes having the biggest amount of stakes are selected to be
part of the committee.

This mechanism lead to the situation where only the n processes selected first will always
be selected, and the other processes will never be. This mechanism is not fair, since Condition
1 is not satisfied. The processes not selected have, by assumption, a positive stake, and so
they should be selected infinitely often.

Note that in the special case where there are at most n processes with a positive stake,
and they are all selected, then fairness of selection is satisfied.

Select the processes with lowest stake

This selection mechanism works as follows: for any height h, with respect to the blockchain
up to height h− 1, the n processes having the lowest amount of stakes are selected to be
part of the committee.

If all N processes are part of the system since the beginning, the number of times each
process has been selected after l blocks is on average l ∗ n/N selections. This mechanism is
fair according to the Definition 1.

Let us remark that this mechanism is fair with the model considered in this example,
since processes cannot exit nor enter during the execution. If that assumption is removed,
the following can happen. If processes could enter or leave, once a process is selected and
rewarded, it knows that it would not be selected before a long period of time, on average
after n/N blocks, one incentive could be to create new sub addresses (processes) such that
they will have low stakes and it will be selected more often. Another similar scenario is that
if a process has a big amount of stakes, it might not be allowed to participate in committees
for a long time until all the process with small stakes caught up. The process might want
to split into lot of stakeholders with small stakes. In such a way, the new stakeholders will
always have the smallest stakes and be selected, if it continues to do so, it might block other
processes to be committee members. Therefore, selecting the processes with the lowest stakes
is not stable in an open setting.

I Remark 3. An unfair selection mechanism can lead to a centralization of the system, by
always letting the same processes decide on the next block. Although the assumption on
the bound of Byzantine processes does not depend on the selection mechanism, we note
that when a selection mechanism selected the processes with the lowest amount of stakes,
and only correct processes in committees are rewarded, at some point processes that were
non-correct will have the least stake, and thus be selected.

Tokenomics 2020

4:8 On Fairness in Committee-Based Blockchains

5.2 Reward Mechanism

5.2.1 Definition of Reward Mechanism
In blockchain systems, processes that produce and add blocks to the blockchain are rewarded.
In a committee-based blockchain, a committee is the producer of the block. Within that
committee, some processes may not behave as prescribed. There may be different ways of
rewarding members of committees. To do so, we define the reward mechanism. A reward
mechanism consists of the reward function defined as follows: reward : B+×P(Information)×
N→ R|Π| ∪ (⊥, . . . ,⊥), where P(Information) is the power set of all messages, and we recall
that Π is the set of processes, and B+ represents the set of non-empty blockchains.

If bc is a blockchain and |bc| < h, reward(bc,M, h) = (⊥, . . . ,⊥). Otherwise, it assigns to
each process a given reward. In reward(bc,M, h), M represents the set of messages received,
h the height of the blockchain bc where the reward of committee member is computed.

A reward is considered allocated if it is written in the blockchain. The second part of the
reward mechanism is to choose when to allocate the rewards corresponding for a given height.
If a reward has been allocated at a height h, the process can use it after a certain number
of blocks defined in the genesis block (e.g. [17, 13]). We consider that for each production
of block its rewards are allocated in exactly one block and not over different blocks, such
that after the allocation of rewards a process knows if it has been rewarded or not. Note
that once rewards are allocated, they cannot change anymore. Some blockchain systems add
punishment mechanism, called slashing, to afflict, afterwards, some costs to a process if there
is a proof of some misbehavior, as described in [32].

5.2.2 Fairness of Reward Mechanism
Let pi be a process, and let T be a fragment of pi’s execution. If at the beginning of the
fragment T , the internal state of pi is correct and pi follows the given protocol during the
fragment T , then we say that pi is T -correct. A correct internal state is a state of the process
that can be the result of pi following the protocol. A correct process is T -correct ∀T . For
example, pi is considered h-correct if during its execution of height h it followed the protocol.

We define the following properties for characterizing the fairness of a reward mechanism.
Let h be a height. Each committee member has a boolean variable rhi , which we call reward
parameter defined as follows:
1. If pi is a not a committee members for h, then rhi = 0,
2. h-completeness. If pi is a committee members for h and pi is h-correct, then rhi = 1,
3. h-accuracy. If pi is a committee members for h and pi is not h-correct, then rhi = 0.

If rhi = 0, it means that pi is not rewarded for height h, and if rhi = 1, pi has been
rewarded for h. The properties are inspired by classical properties of failure detectors [6].

I Remark 4. Note that we do not reward non-committee members. In this article, we do not
consider delegations. When a process delegates to a committee member, once the committee
member is rewarded, all of its delegates are rewarded proportionally to what they delegated.
In future works, we may consider the case of committee-based blockchains with delegation.
To do so, rhi must contain more information and not just be a boolean variable.

I Definition 5 (Complete Fairness of a Reward Mechanism). Let R be a reward mechanism. If
∀h > 0, R satisfies Conditions 1 and h-completeness (Condition 2), we say that R satisfies
complete fairness.

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni 4:9

If a reward mechanism satisfies complete fairness, it means that for all height h > 0, all
h-correct committee members are rewarded, and non-committee members are not.

I Proposition 6. There exists at least one reward mechanism satisfying complete fairness.

Once a block is in the chain, rewarding all committee members, in the next block, for that
block and only them, satisfy Conditions 1 and 2. Condition 1 is satisfied since for all height,
non-committee members are not rewarded. Condition 2 also holds, for any given height h,
all committee members of h are rewarded, in particular all h-correct committee members.

I Definition 7 (Accurate Fairness of a Reward Mechanism). Let R be a reward mechanism.
If ∀h > 0, R satisfies conditions 1 and h-accuracy (Condition 3), we say that R satisfies
accurate fairness.

If a reward mechanism satisfies accurate fairness, it means that for all height h > 0, all non
h-correct committee members are not rewarded.

I Proposition 8. There exists at least one reward mechanism satisfying accurate fairness.

Never allocating rewards satisfies Conditions 1 and 3. Condition 1 is satisfied since non-
committee members are not rewarded. Condition 3 holds, since no process is rewarded. In
particular for any given height h > 0, no non h-correct committee members is rewarded.

Although simple and trivial to satisfy either complete fairness or accurate fairness,
satisfying both at the same time is more complex and not always possible.

I Definition 9 (Fairness of a Reward Mechanism). Let R be a reward mechanism. If ∀h > 0,
R satisfies Conditions 1, h-completeness (Condition 2) and h-accuracy (Condition 3), we
say that R is fair.

We say that a reward mechanism is fair when at each height h, all and only h-correct
committee members are rewarded.

I Remark 10. ∀h > 0, if |Vh| > 1, then for a reward mechanism to be (eventually) fair,
rewards cannot be allocated directly in the block. For any height h > 0, the set of h-correct
committee members cannot be known in advance. If ∀h > 0, |Vh| = 1, the reward can be
directly given to the only committee member, so in the block at height h.

I Theorem 11. There exists a fair reward mechanism in a committee-based blockchain
protocol iff the system is synchronous.

Proof. We prove this theorem by double implication.
If there exists a fair reward mechanism, then the system is synchronous.
Let R be a reward mechanism. By contradiction, we assume that R is fair and that the
system is not synchronous.
Vh is the set of committee members for the height h. Let k > 0 be the number of blocks
to wait before distributing the rewards for Vh. The reward is allocated by the committee
Vh′ , where h′ = h+ k. Since the system is not synchronous, the committee members of
height h′, Vh′ , may not receive all messages from Vh before allocating the rewards.
By Conditions 1, and 2, since the reward mechanism is fair, by Conditions 1 - 3, all and
only the h-correct committee members of the height h have a reward parameter equal
to 1. That means that the h′-correct committee members of Vh′ know exactly who were
the h-correct committee members in Vh, so they got all the messages before giving the
reward. Contradiction, so the system is synchronous.

Tokenomics 2020

4:10 On Fairness in Committee-Based Blockchains

If the system is synchronous, then there exists a fair reward mechanism.
We assume that the system is synchronous and ∀h > 1, all messages sent by h-correct
processes at height h are delivered before the block at height h+1. Let R be the following
reward mechanism: let h be a height. Rewards for a block at height h are allocated at
height h+ 1 by the committee Vh+1.

If a process is not a committee member for height h, set its reward parameter to 0,
this is known since processes are already at height h+ 1.
By combining the messages from committee member of h processes, since the commu-
nication system is synchronous, it is possible to differentiate between h-correct and non
h-correct committee members, and so set the reward parameter of h-correct committee
members of h to 1; and set the reward parameter of non h-correct committee members
of h to 0.

By construction, the committee members in h + 1 allocates rewards to all and only
h-correct committee members, so R is fair, it satisfies all fairness Conditions 1 - 3.

�Theorem 11

If there is no synchrony, there cannot be a fair reward mechanism for committee-based
blockchains. Our definition of fairness states that for any height Conditions 1-3 are satisfied.
Processes should always receive all rewards they deserve. This definition can be weakened.

I Definition 12 (Eventual Fairness of a Reward Mechanism). Let R be a reward mechanism.
If ∃h0 > 0 : ∀h ≥ h0, R satisfies Conditions 1, h-completeness (Condition 2) and h-accuracy
(Condition 3), we say that R is eventually fair.

A reward mechanism is eventually fair if after an unknown time, the rewards are allocated
to and only to correct committee members.

We note that if a reward mechanism is fair, then it is eventually fair but the reverse
(reciprocal) is not necessarily true.

Detectable Byzantine Processes

In synchronous systems, it is always possible to detect Byzantine processes, for example using
the broadcast abstraction detectable all-to-all (DA2A) defined in [29]. Detecting Byzantine
processes allows to not reward them, and then to satisfy Condition 3. On the other hand,
in eventual synchronous systems, the problem is more difficult. As in this work, Kihlstrom
et al., in [26] distinguish between detectable and non-detectable Byzantine. The detectable
Byzantine are the processes whose behavior can be detected, for instance by doing omission or
commissions failures. Non-detectable Byzantine are Byzantine processes whose fault cannot
be detected, for example processes that alter their internal state. In [19], Greve et al. extend
that approach and propose a failure detector for detectable Byzantine in dynamic networks.

Note that although Kihlstrom et al. proposed in [26] a failure detector for solving
consensus, our problem is not the same, and we cannot apply their failure detector as it is.
In [26], once a process has a detectable Byzantine behavior, it should be suspected forever.
In our model, we do not want to punish indefinitely Byzantine processes. In fact, we want
for any height h to not reward only processes that were not h-correct. For example, let pi be
a process such that it is part of committees h and h′, such that h′ > h. Suppose also that
during height h, pi sends contradictory messages (and so is Byzantine), but then recovered
before the beginning of height h′ and follows the protocol during all h′. Even if pi is not
h-correct, it recovered before h′ and is h′-correct. If pi has been detected and not rewarded
for height h, that should be taken into consideration of its work during height h′, and since
it follows the protocol, it should be rewarded for height h′. The failure detector proposed by
Kihlstrom et al., once a process has been suspected, marks such process as Byzantine forever.

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni 4:11

I Theorem 13. There exists an eventual fair reward mechanism in a committee-based
blockchain protocol iff the system is (eventually) synchronous and Byzantine processes are
detectable.

Proof. We prove this theorem by double implication.
If there exists an eventual fair reward mechanism, then the system is eventually synchron-
ous or synchronous and Byzantine processes are detectable.
Let R be a reward mechanism. We assume that R is eventually fair.
If R is fair, by Theorem 11, the communication is synchronous, which ends the proof.
Otherwise, since R is eventually fair, that means that there is a point in time h from which
all the rewards are correctly allocated, so for any height h′ ≥ h, h′-correct committee
members of committees at height h′ are able to distinguish between non-correct processes
during the height they are distributing the rewards, the Byzantine are then detectable.
If we consider h as the beginning of the execution, then we have that R is fair, and by
Theorem 11, the message delay is upper bounded. We have that after h, the message
delay is upper bounded, so the communication is eventually synchronous. Therefore,
the Byzantine are then detectable, and the communication is synchronous or eventually
synchronous.
If the system is eventually synchronous or synchronous, and Byzantine processes are
detectable, then there exists an eventual fair reward mechanism.
If the system is synchronous, the proof follows directly from Theorem 11. Consider
that the system is eventually synchronous, but not synchronous. Let R be the following
mechanism: Let h be a height. Rewards for a block at height h are allocated at height
h+ 1 by the committee Vh+1.

If a process is not a committee member for height h, set its reward parameter to 0,
this is known since processes are already at height h+ 1.
By combining the messages from committee member of h processes, if there is not
sufficient information to detect the behavior of processes, reward only those detected
as h-correct and in Vh, and the process proposing the distribution of reward increases
the duration to wait before starting the next height. If there is enough information to
detect the behavior of all processes in Vh, then reward the h-correct processes in Vh
and do not reward non h-correct processes in Vh.

R is eventually fair.

�Theorem 13

I Corollary 14. In an asynchronous system, there is no (eventual) fair reward mechanism
in a committee-based blockchain tolerating Byzantine processes.

Proof. Assume that the system is asynchronous, where there are good periods such that
consensus can be reached. By contradiction, let R be an eventual fair reward mechanism.

If there are non-detectable Byzantine processes in the system, R is not fair (Theorem 13);
If all Byzantine processes are detectable, then by Theorem 13, the system must be
synchronous, or eventually synchronous.

We have a contradiction, since the system is asynchronous. It is not possible to have an
(eventual) fair reward mechanism in an asynchronous system. �Corollary 14

Note that this result holds even if all the processes are correct but not known in advance,
and the protocol tolerates Byzantine faults. In fact, it is different from the FLP impossibility
result of consensus in an asynchronous system with one faulty process [15].

Tokenomics 2020

4:12 On Fairness in Committee-Based Blockchains

6 Numerical Examples

In this section, we examine the impact of different communication models on the fairness
of reward mechanisms through several numerical examples that confirm the results on the
fairness of reward mechanisms from Section 5.2.

Execution. In our analyses, processes run a committee-based blockchain protocol as de-
scribed in Section 4, and rewards for a block produced at a height h are allocated in the block
at height h+ 1. Note that the consensus module is Byzantine fault tolerant. We highlight
the environment’s important characteristics: the communication system, the total number of
processes in the system, the size of each committee, the different type of processes and their
number at a given height, the rewarding mechanism, and the selection mechanism. We must
choose the value of these parameters before launching the execution. We consider different
communication systems, and rewards are allocated by the next committee by using messages
they delivered from the previous height – use the combination of all messages and check if
they correspond to the correct time and a possible value to send according to the state.

We consider a system where all processes are part of all consensus instances. For clarity,
and without loss of generality, we consider a system with n ≥ 4 processes where all are
selected. As stated in Remark 2, selecting all processes is a fair selection mechanism. We can
now focus on the impact of the network on rewards. For any height h, there can be at most
b(n− 1)/3c non h-correct processes in each committee. For a committee, a quorum of d2n/3e
is needed for any decisions. In the case where there are for any height h some non h-correct
processes, we assume that processes have enough information to detect it when distributing
rewards. In particular, and for the experiment the Byzantine are specially tagged, and that
tag is used only for allocating rewards. When an h-correct process receives a message from a
non h-correct, it suspects it, and broadcasts the information. When an h-correct process
delivers at least 2bn/3c+ 1 suspicions for a process, it considers it as non h-correct, and does
not propose to reward it.

We use MATLAB [30] for our analysis. We analyze three different communication models.
First, a synchronous communication, where there is no delay. Then we consider the two
following semi-synchronous communication models (i) the system alternates between good
and bad periods, where during good periods message delays are upper bounded, and (ii)
from an unknown time, message delays are upper bounded (eventually synchronous model).
We note that in all these models, consensus can be reached. In the good/bad model, progress
for consensus instances are guaranteed during the good periods. Note that in the eventually
synchronous model, once the global stabilization time (GST) happens all message delays
are upper bounded. If for a process, the GST happens during height h, then for all height
h′ > h, the message delays are upper bounded.

In each configuration of the communication model, we ran the experiment 50 times, and
took the mean. 0 represents if a process did not receive a reward, and 1 if the process
received a reward for the corresponding height. Due to the space limitation, we only present
the experiment of the eventual synchronous model.

Eventually Synchronous Model

We consider an eventual synchronous model where all processes are correct, and part of each
committee instances. Recall that eventual synchronous is a system where after a finite but
unknown time (the GST), message delay is upper bounded for the rest of the execution. In
our examples, we consider that the GST happens during height 10.

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni 4:13

Figure 1 Evolution of Rewards in an Eventual Synchronous System, where Global Stabilization
Time happens during height 10.

On Fig. 1, we present the evolution of reward for each height. We draw the mean of the
average reward of each participant (red curve). The blue and yellow curves represent the
standard deviation. We can see the set in which the processes are rewarded. When the blue
and yellow curves converge, it means that all processes have on average the same reward. We
notice that from height 10, the evolution of the reward is increasing. Approximately, from
height 14, all processes are rewarded. Before height 10, there is a fluctuation in the evolution
of rewards allocated because of the asynchronous periods; processes are not necessarily
rewarded even if they participate. Their messages were not received on time. Once the GST
happens, message delays become upper bounded but some processes still have a time-out
shorter than the bound. These processes still increase their time-out until they receive all
messages or detect incorrect behavior. When all processes deliver messages during their
corresponding rounds, they allocate the rewards to all and only correct processes. It means
that the reward mechanism is eventually fair.

7 Conclusions and Future Works

The originality of our contribution is the study of the impact of network conditions on
the fairness of the rewarding in committee-based blockchains prone to Byzantine behavior.
We proved that the reward mechanism is (eventually) fair iff the system communication is
(eventually) synchronous and Byzantine processes are detectable. Our study opens interesting
future research directions in particular the extension to other types of behaviors such as
rational or amnesic. Furthermore, we are interested in studying the impact of network attacks
on the fairness of rewarding. Another interesting direction is the design of self-adaptive fair
rewarding schemes.

Tokenomics 2020

4:14 On Fairness in Committee-Based Blockchains

References
1 Marcos K Aguilera. A pleasant stroll through the land of infinitely many creatures. ACM

Sigact News, 35(2):36–59, 2004.
2 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci-

Piergiovanni. Correctness of Tendermint-Core Blockchains. In OPODIS 2018, December 17-19,
2018, Hong Kong, China, pages 16:1–16:16, 2018.

3 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. Dissecting tendermint. In Networked Systems - 7th International Conference,
NETYS 2019, Marrakech, Morocco, June 19-21, 2019, pages 166–182, 2019.

4 Emmanuelle Anceaume, Antonella Del Pozzo, Romaric Ludinard, Maria Potop-Butucaru, and
Sara Tucci-Piergiovanni. Blockchain Abstract Data Type. In The 31st ACM on Symposium
on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24.,
pages 349–358, 2019.

5 E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT consensus. CoRR,
abs/1807.04938v1, July 2018. URL: https://arxiv.org/abs/1807.04938v1.

6 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

7 Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. (Leader / Randomization /
Signature)-free Byzantine Consensus for Consortium Blockchains, 2017.

8 Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consistency. In
Proceedings of the 17th International Conference on Distributed Computing and Networking,
Singapore, January 4-7, 2016, pages 13:1–13:10, 2016.

9 Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier, Franck Petit, and Sam Toueg.
With finite memory consensus is easier than reliable broadcast. In Principles of Distributed
Systems, 12th International Conference, OPODIS 2008, Luxor, Egypt, December 15-18, 2008.
Proceedings, pages 41–57, 2008.

10 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988.

11 Elli Androulaki et al. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto,
Portugal, April 23-26, 2018, pages 30:1–30:15, 2018.

12 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Financial Cryptography and Data Security - 18th International Conference, FC 2014, Christ
Church, Barbados, March 3-7, 2014, pages 436–454, 2014.

13 Ittay Eyal and Emin Gün Sirer. Majority is not enough: bitcoin mining is vulnerable. Commun.
ACM, 61(7):95–102, 2018.

14 Giulia C. Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod Viswanath, and Gerui
Wang. Compounding of wealth in proof-of-stake cryptocurrencies. In Ian Goldberg and Tyler
Moore, editors, Financial Cryptography and Data Security - 23rd International Conference,
FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, pages 42–61, 2019.

15 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2), April 1985.

16 Nissim Francez. Fairness. Texts and Monographs in Computer Science. Springer, 1986.
17 J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and

applications. In Proc. of the EUROCRYPT International Conference, 2015.
18 Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K.

Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: A scalable and
decentralized trust infrastructure. In 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2019, Portland, OR, USA, June 24-27, 2019, pages
568–580, 2019.

https://arxiv.org/abs/1807.04938v1

Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni 4:15

19 Fabíola Greve, Murilo Santos de Lima, Luciana Arantes, and Pierre Sens. A time-free byzantine
failure detector for dynamic networks. In 2012 Ninth European Dependable Computing
Conference, Sibiu, Romania, May 8-11, 2012, pages 191–202, 2012.

20 Rachid Guerraoui and Jingjing Wang. On the unfairness of blockchain. In Networked Systems
- 6th International Conference, NETYS 2018, Essaouira, Morocco, May 9-11, 2018, pages
36–50, 2018.

21 Önder Gürcan, Alejandro Ranchal Pedrosa, and Sara Tucci-Piergiovanni. On cancellation of
transactions in bitcoin-like blockchains. In On the Move to Meaningful Internet Systems. OTM
2018 Conferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE
2018, Valletta, Malta, October 22-26, 2018, pages 516–533, 2018.

22 Önder Gürcan, Antonella Del Pozzo, and Sara Tucci-Piergiovanni. On the bitcoin limitations
to deliver fairness to users. In On the Move to Meaningful Internet Systems. OTM 2017
Conferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE 2017,
Rhodes, Greece, October 23-27, 2017, pages 589–606, 2017.

23 Maurice Herlihy and Mark Moir. Enhancing accountability and trust in distributed ledgers.
CoRR, abs/1606.07490, 2016.

24 Dimitris Karakostas, Aggelos Kiayias, Christos Nasikas, and Dionysis Zindros. Cryptocur-
rency Egalitarianism: A Quantitative Approach. In International Conference on Blockchain
Economics, Security and Protocols (Tokenomics 2019), Paris, France, May 06-07, 2019.

25 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part I, pages 357–388, 2017.

26 Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-Smith. Byzantine fault detectors
for solving consensus. Comput. J., 46(1):16–35, 2003.

27 E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhancing Bitcoin
Security and Performance with Strong Consistency via Collective Signing. In Proceedings of
the 25th USENIX Security Symposium, 2016.

28 Nicolas Lagaillardie, Mohamed Aimen Djari, and Önder Gürcan. A Computational Study on
Fairness of the Tendermint Blockchain Protocol. Information, 10(12):378, 2019.

29 Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Fairledger: A fair
blockchain protocol for financial institutions. In 23rd International Conference on Principles
of Distributed Systems, OPODIS 2019, December 17-19, 2019, Neuchâtel, Switzerland, pages
4:1–4:17, 2019.

30 MATLAB. version 9.6 (R2019a). The MathWorks Inc., Natick, Massachusetts, 2019.
31 S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/

bitcoin.pdf (visited on 2019-08-15), 2008.
32 Dev Ojha and Christopher Goes. F1 Fee Distribution. In International Conference on

Blockchain Economics, Security and Protocols (Tokenomics 2019), Paris, France, May 06-07,
2019.

33 Rafael Pass and Elaine Shi. The sleepy model of consensus. In ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, pages 380–409, 2017.

34 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, April 1980.

35 Fahad Saleh. Blockchain Without Waste: Proof-of-Stake. SSRN Scholarly Paper ID 3183935,
Social Science Research Network, Rochester, NY, January 2019.

36 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August
2, 2019., pages 347–356, 2019.

Tokenomics 2020

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

Decentralization in Open Quorum Systems:
Limitative Results for Ripple and Stellar
Andrea Bracciali
Department of Computer Science, University of Stirling, UK
http://www.cs.stir.ac.uk/~abb/
abracciali@gmail.com

Davide Grossi
Bernoulli Institute for Maths, CS and AI, University of Groningen, The Netherlands
Amsterdam Center for Law and Economics, University of Amsterdam, The Netherlands
Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands
http://www.davidegrossi.me
d.grossi@rug.nl

Ronald de Haan
Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands
https://staff.science.uva.nl/r.dehaan/
me@ronalddehaan.eu

Abstract
Decentralisation is one of the promises introduced by blockchain technologies: fair and secure
interaction amongst peers with no dominant positions, single points of failure or censorship. De-
centralisation, however, appears difficult to be formally defined, possibly a continuum property of
systems that can be more or less decentralised, or can tend to decentralisation in their lifetime. In this
paper we focus on decentralisation in quorum-based approaches to open (permissionless) consensus
as illustrated in influential protocols such as the Ripple and Stellar protocols. Drawing from game
theory and computational complexity, we establish limiting results concerning the decentralisation
vs. safety trade-off in Ripple and Stellar, and we propose a novel methodology to formalise and
quantitatively analyse decentralisation in this type of blockchains.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Blockchain, decentralization, game theory, computational complexity

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.5

Related Version Earlier versions of the paper are available at https://export.arxiv.org/abs/
1911.08182.

Acknowledgements We are indebted to the anonymous reviewers of Tokenomics 2020 for several
punctual and helpful suggestions on an earlier version of the paper.

1 Introduction

To allow “any two willing parties to transact directly with each other without the need
for a trusted third party" [29] was one of the main motivations for the introduction of
the Bitcoin blockchain, and several earlier attempts at digital currencies. A blockchain is
a distributed state machine in charge of guaranteeing the correctness and trustability of
data,1 e.g., monetary transactions in the case of Bitcoin. State updates are recorded in a
chain of data blocks. Data are protected by replication of the state, i.e., of the chain of

1 Blockchains can also make the computation trustable, e.g., guaranteeing the fair and untamperable
execution of agreements among peers encoded as programs.

© Andrea Bracciali, Davide Grossi, and Ronald de Haan;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 5; pp. 5:1–5:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1451-9260
http://www.cs.stir.ac.uk/~abb/
mailto:abracciali@gmail.com
https://orcid.org/0000-0002-9709-030X
http://www.davidegrossi.me
mailto:d.grossi@rug.nl
https://orcid.org/0000-0003-2023-0586
https://staff.science.uva.nl/r.dehaan/
mailto:me@ronalddehaan.eu
https://doi.org/10.4230/OASIcs.Tokenomics.2020.5
https://export.arxiv.org/abs/1911.08182
https://export.arxiv.org/abs/1911.08182
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Decentralization in Open Quorum Systems

blocks, within a network of peers. The blockchain protocol must guarantee some form of
distributed consensus allowing peers to agree on the information contained in the blockchain,
e.g., who has been paid, and that no double spending of virtual coins has occurred, without
the supervision of a centralised authority – a currency without a central bank.

Context: the quest for decentralisation

In this paper we address decentralisation in distributed consensus. Decentralisation is a
key concern in permissionsless blockchains, where participation is allowed in a generally
unrestricted way. Permissionless blockchains are clearly exposed to the presence of Byzantine
peers, i.e., dishonest peers trying to exploit the network and not bound to the blockchain
protocol. Byzantine distributed consensus is a long-standing problem, from Lamport’s
characterisation [25] and the FLP impossibility result [12], to the subsequent research on
data replication and consistency based on Byzantine Fault-tolerant consensus (BFT), [27, 36].
Several proposals are currently competing in a multi-billion market, addressing the so-called
blockchain trilemma, i.e., achieving security, scalability and decentralisation together.

One of the breakthroughs of Bitcoin was the introduction of the Proof-of-Work (PoW) [9]
as a mechanism to enable a probabilistic Byzantine distributed consensus. Informally speaking,
by solving a computationally hard problem one of the peers is entitled to create the next
block, cryptographically linked to the previous ones. Under the assumption that Byzantine
computational power is suitably limited within the network, the probability that enough
work can be channeled to alter block history decreases with the ageing of the blocks [15].
Bitcoin reaches finality with an acceptable probability in about one hour (6 blocks), with
limited transactions per second.2

In Proof-Of-Stake (PoS) blockchains peers contribute to the definition of the next block
with a probability proportional to the stake (coins), rather than computational power, they
detain in the system. Safety follows from the honest peers detaining the majority of stake.
Scalability improves in Proof-of-Stake, but the management of security typically results in
being more complex.

The BFT paradigm has also been proposed for blockchain consensus, providing scalability
in transaction per second thanks to low transaction latency and high throughput. BFT,
however, is more constrained in terms of the scalability in the number of peers [40], since
the number and identity of peers needs to be known and in some cases fixed [5]. This
kind of blockchain has been proposed, for instance, for financial services, where a limited
number of known and certified peers need to exchange fast and numerous transactions. It is
worth remarking that if consensus requires control on peers, a centralised authority might be
required, with implications also on identity, privacy and censorship.

Research question

In this paper we focus on BFT blockchains based on quorum systems [39]. In such systems
consensus emerges from neighbourhoods of peers. The properties of such neighborhoods,
together with assumptions on Byzantine failure thresholds, are then essential to guarantee
the liveness and safety of the consensus protocol, that is, whether honest peers are able to
eventually reach consensus on a correct next state. At the heart of these protocols is a notion
of trust between peers: nodes select which other nodes to trust, and listen to, in the network.
The paper focuses on the following research question:

To what extent can consensus be decentralized, when based on peer-to-peer trust relations?

2 More technical and comprehensive introductions to blockchains can be found in [2, 30, 41].

A. Bracciali, D. Grossi, and R. de Haan 5:3

We take an analytical approach and establish theorems that point to the existence of inherent
tradeoffs between safety and decentralization for approaches based on such trust networks.
We use tools from game theory (specifically the theory of command games [20, 19]) and
computational complexity theory. The interface of methods from theoretical economics
and computational complexity have proven extremely prolific in other areas of computer
science and artificial intelligence, such as computational social choice theory [3, 18]. Our
paper showcases these methods for general investigations on blockchain consensus and
decentralisation.

We will specifically consider Ripple [6, 37] and Stellar [28], two quorum-based blockchains
attempting to extend the applicability of the BFT paradigm from a permissioned to a
permissionless setting, aiming at improving decentralisation. Ripple provides frictionless
global payments and corporate-oriented efficient transactions. It currently relies on a list of
“authorised” validators3 in charge of the correctness of transactions. Access is permissioned
and each peer will need to have in their neighbourhood of trust a number of validators
from the list. While the list was originally entirely composed by Ripple validators, today
third-party validators, e.g., private companies and universities, have been included. Stellar
provides payments and asset management to corporate and individuals, and aims to push
decentralisation further by offering open membership and allowing peers to autonomously
define their trust networks, i.e., the set of validators that they trust. However, strong
constraints hold on the topology of such trust networks.

Both Ripple and Stellar have been object of criticism with respect to the level of
decentralisation of their current implementations, and the need for further research on
protocols like Ripple and Stellar is emphasised, for instance, in [4].

Related work

Even though at the time of writing Ripple and Stellar are, respectively, the third and twelfth
blockchain systems in terms of market capitalization,4 little foundational work exists on
their protocols. Correctness analyses of Ripple have been proposed in [6], and of Stellar in
[28, 17]. A specific study on the issue of decentralisation in Stellar has also very recently
been presented in [23]. The paper investigates the network of Stellar’s peer-to-peer trust
relations by means of an extended version of PageRank used to evaluate nodes’ influence.
Findings about the current status show centralisation on two critical validators, which are
controlled by the Stellar Foundation. Our paper contributes further general results on the
level of decentralization that could reasonably be achieved in systems like Ripple and Stellar.

Paper contribution and outline

The paper makes three contributions. First it develops a novel theoretical framework,
rooted in economic theory (command games [20, 19], power indices [33, 1]), to ascertain the
influence that peers can exert on each other in quorum systems based on trust networks. This
contributes a novel methodology for a much needed quantitative evaluation of decentralisation
in blockchain with respect to its consensus layer. The proposed methods are applied to
Ripple and Stellar (Theorem 25). Second, it establishes an “impossibility of decentralisation”
result for a class of consensus protocols of the Ripple type (Theorem 16), which are based on

3 At the time of writing the list consists of about 30 validators, available at https://xrpcharts.ripple.
com

4 Source: https://coinmarketcap.com/all/views/all/. Retrieved on 11th May 2020.

Tokenomics 2020

https://xrpcharts.ripple.com
https://xrpcharts.ripple.com
https://coinmarketcap.com/all/views/all/

5:4 Decentralization in Open Quorum Systems

trust networks with a fixed threshold of tolerable Byzantine peers. This results shows that,
in such systems, a necessary condition for safety is the existence of validators that must be
trusted by every peer in the network, hindering the possibility of full decentralisation. Third,
it develops an appraisal of computational barriers to decentralization in protocols like Stellar,
that are based on so-called federated Byzantine agreement systems. Specifically, we show
that constraints that are necessary to guarantee the safety of the network require peers to be
able to solve problems that are computationally intractable in principle (Theorems 21 and
22). This result identifies computational difficulties for the construction of safe peer-to-peer
trust networks, thereby pointing to computational barriers for the full decentralisation of
Stellar.

A Byzantine model of trust network is introduced in Section 2, impossibility and in-
tractability results are presented in Section 3, and decentralisation measures in Section 4.
Section 5 concludes. All proofs are provided in a technical appendix.

2 Preliminaries

The paper is concerned with systems based on the following high-level blueprint: nodes hold
opinions on a value (e.g, whether a transaction should be recorded or not); they validate
an opinion when they observe enough nodes, among those they trust, that hold the same
opinion (agreement); some nodes may be Byzantine; and no two honest nodes should be able
to validate opinions with different values (safety). Crucially, nodes are able to autonomously
decide which other nodes to trust. This section defines the above set-up formally.

2.1 Opinions and Opinion Profiles
Let N be the set of nodes, with n = |N |, and let H ⊆ N the set of honest nodes and
B = N \H the set of Byzantine nodes. The opinion of a honest node i ∈ N is a value in
{0, 1}. At any given time, the collection of each node’s opinions defines an opinion profile
that associates a “genuine” opinion from {0, 1} to every honest node (the opinion that the
node reveals to the network). And to each Byzantine node in N \H it associates a function
from honest nodes to opinions. This function represents the value that each Byzantine node
would reveal to each honest node.

I Definition 1. An opinion profile o : N → {0, 1} ∪ {0, 1}H such that o(i) ∈ {0, 1} if
i ∈ H and o(i) ∈ {0, 1}H if i ∈ B. Given x ∈ {0, 1}, x represents the element of singleton
{0, 1} \ {x}.

The definition makes some simplifications, which are worth flagging. Even from the perspective
of binary valued opinions, it would be more realistic to work with a ternary set of opinions
containing 1, 0 plus an undefined value representing undecided nodes. Also, the definition
rules out the possibility for a Byzantine node to reveal inconsistent values (that is, 1 and
0 to a same node). However, such simplifications are not fundamental, and the results we
present would carry over to these more general settings.

We define then what it means for a node to observe an agreement among other nodes, in
a given opinion profile.

I Definition 2. Let an opinion profile o be given. A set of nodes C ⊆ N is said to
agree (in o) from the perspective of i ∈ N if for all j, k ∈ H ∩ C and j′, k′ ∈ B ∩ C,
o(j) = o(k) = o(j′)(i) = o(k′)(i).

A. Bracciali, D. Grossi, and R. de Haan 5:5

That is, a node i observes agreement in a set of nodes C whenever the honest nodes in that
set hold the same opinion, and that opinion is also the opinion revealed to i by the Byzantine
nodes in C.

2.2 Byzantine Trust Networks
We now shift to the definition of the structures of peer-to-peer trust relations underpinning
consensus in the systems we are focusing on.

I Definition 3. A Byzantine trust network (BTN) is a tuple T = 〈N,H, Ti, Ci〉 where:
N = {1, . . . , n} is a finite set of nodes.
H ⊆ N is the set of honest nodes. B = N\H is the set of Byzantine nodes. We denote
with bi = |B∩Ti|

|Ti| the ratio of Byzantine nodes in Ti, and with b = max {bi}i∈H the largest
such ratio.
Ti ⊆ N , for each node i ∈ H, is the non-empty set of nodes that i trusts, i.e., its trust
set.5
Ci ⊂ 2Ti , with i ∈ H. We refer to Ci as the set of winning coalitions for node i. For
ease of presentation we will refer to winning coalitions also via a function C : N → 22N

assigning the set Ci of subsets of N to each i ∈ H.
We will sometimes assume that, for all i, i ∈ Ti. We will also sometimes assume that for all
i ∈ H, {i} ∈ Ci. In such a case the BTN is said to be vetoed.

Intuitively, a winning coalition C ∈ Ci for i is a set of nodes such that, if all its members
agree from the perspective of i, then their opinion is validated by i (cf. [32]). We define the
notion of validation formally below (Definition 8). When {i} belongs to Ci, i cannot validate
an opinion unless it also holds such opinion (it holds a veto for its own validation).
I Remark 4. In the Stellar white paper [28] BTN are referred to as federated Byzantine
agreement systems (FBAS), or as federated Byzantine quorum systems in [17], and the winning
coalitions of a node are referred to as quorum slices. BTNs are also known structures in
the economic theory literature, where they are referred to as command games [20, 19], or as
simple game structures [22].

A natural class of BTNs is obtained by associating a quota, or threshold, qi ∈ (0.5, 1] to
each honest node i:6

I Definition 5. A Quota Byzantine Trust Network (QBTN) is a BTN such that for all
i ∈ H there exists a quota qi ∈ (0.5, 1] such that:

Ci = {C ⊆ Ti | |C| ≥ qi · |Ti|} .

A QBTN is therefore denoted by a tuple T = 〈N,H, Ti, qi〉. A QBTN is said to be uniform
whenever qi = qj for any i, j ∈ H. It is said to be effective whenever qi ∈ (0.5 + b, 1− b] for
any i ∈ H.

Intuitively, QBTNs are BTNs where the winning coalitions of a node are determined by a
numerical quota: i’s validation is determined whenever at least a fraction qi of nodes in Ti
hold that opinion. This quota should be set in such a way that: i) the quota is met whenever
the honest nodes in Ti agree, and ii) if the quota is met for an opinion x, then there is at least

5 Ripple and Stellar refer to trust sets as unique node lists (UNLs).
6 Cf. [16].

Tokenomics 2020

5:6 Decentralization in Open Quorum Systems

an honest majority of nodes with opinion x in the trust set of i. That is, qi ∈ (0.5 + b, 1− b],
which is the case for what we called effective QBTNs. For this constraint to be met the
fraction of Byzantine nodes in each Ti should therefore fall in the interval [0, 0.25).

I Remark 6. It is worth observing that in this context the largest possible ration of Byzantine
nodes b in a BTN plays a slightly different role than in the standard BFT failure models
where, classically, safety would require b < 1

3 |Ti| [31, 8, 25]. In the standard BFT failure
models one is interested in making sure that any two simple majorities intersect in some
honest node in order for the system not to fork. In a BTN, the role of b is slightly different:
it is to guarantee that an honest node can always safely validate an opinion because a honest
majority exists in its trust set, that agrees on that opinion.

The Ripple consensus protocol [6, 37] is based on uniform QBTNs with quotas qi = 0.8
and b = 0.2. The Stellar consensus protocol as described in [28] does not rely on QBTNs but
requires the more general class of vetoed BTNs.

I Remark 7. In Definition 3 we associate winning coalitions only to honest nodes. We do
this for simplicity but it should be clear that trivial collections of winning coalitions can be
associate also to Byzantine nodes. Since the validation by a Byzantine node i is not influenced
by any other node its trivial collection of winning coalitions is the set {C ⊆ N | {i} ⊆ C},
that is, the set of all coalitions containing i. Intuitively, this amounts to stating that i is the
only node influencing its own opinion.

2.3 Validation and Safety
Intuitively, a node i validates an opinion whenever a winning coalition of nodes trusted by i
agrees on that opinion, from the perspective of i. Given an opinion profile o we denote by

T o
j (x) = {i ∈ Tj | o(i) = x if i ∈ H, and o(i)(j) = x if i ∈ B} (1)

the set of nodes trusted by i who hold opinion x (if they are honest), or reveal opinion x to i
(if they are Byzantine).

I Definition 8. Let a BTN and an opinion profile o be given. Way say that i ∈ N validates
x ∈ {0, 1} (in o) if T o

i (x) ∈ Ci.

In a QBTN, an honest node i validates an opinion whenever there are at least qi · |Ti| nodes
with the same opinion among the nodes it trusts.

I Remark 9. BTNs are a generalization of so-called Byzantine quorum systems [27]. Each
BTN naturally induces the set of quora {Q ⊆ N | ∀i ∈ Q,∃C ∈ Ci : C ⊆ Q}. In words, a
quorum is a set of nodes that contains a winning coalition for each node in the set (cf. [28]).
Intuitively, it is a set of nodes that have the means to stably validate an opinion. For a set
of quora to be a Byzantine quorum system, quora also need to pairwise intersect. We will
come back to this in Section 3.2.

To introduce safety formally, we need some auxiliary notions. Let s : N → 2N be a
function picking, for any agent i, one coalition out of Ci. Each function s induces an operator
Fs : 2N → 2N such that Fs(C) =

⋃
i∈C s(i), collecting, for each i in C, the winning coalition

s(i) picked by function s. We can then recursively construct sets of nodes by joining winning
coalitions of nodes in earlier sets. Such a construction reaches a fixpoint where for each
node in the set a winning coalition is already contained in the set. Formally, for C ⊆ N :
F 0
s (C) = C and Fn+1

s (C) = Fs(
⋃

0≤k≤n F
k
s (C)). Define then F ?s (C) =

⋃
0≤n F

n
s (C). As N

A. Bracciali, D. Grossi, and R. de Haan 5:7

is finite, there exists a non-negative integer n such that Fns (C) = F ?s (C). Observe that for
any C ⊆ N , F ?s (C) is such that for all i ∈ F ?s (C) there is a D ∈ Ci such that D ⊆ F ?s (C).
That is, F ?s (C) is a quorum (cf. Remark 9).

I Definition 10. Let a BTN and an opinion profile o be given. We then say that an opinion
profile o is:

forked (or, is a fork) if there are two honest nodes i, j ∈ H such that i validates x and j
validates x in o.
strongly forked (or, is a strong fork) if there are two honest nodes i, j ∈ H and a function
s such that all nodes in F ?s ({i}) agree on x and all nodes in F ?s ({j}) agree on x.

So, a fork is a profile where two honest nodes i and j have validated two different opinions.
A strong fork is a fork where, in addition, there is a winning coalition for i agreeing on x
and a winning coalition for j agreeing on x, and all nodes in that winning coalition for i also
have a winning coalition agreeing on x and all nodes in that winning coalition for j have a
winning coalition agreeing on x, and so on. In short, a strong fork is a “stable” fork.

I Definition 11. A BTN is safe if there exists no forked profile for it. It is weakly safe if
there exists no strongly forked profile for it.

Safety rules out the possibility that two honest nodes may settle on different opinions, and
therefore the possibility that the run of any consensus protocol on the BTN would generate
a stream of opinion profiles that contains a profile where two nodes have validated different
values. Weak safety allows for forks of only a limited kind. It rules out the possibility that
forks are of a “deep” kind in the sense that they involve all winning coalitions upon which
the diverging opinions are rooted. Clearly safety implies weak safety but not vice versa.

It is finally worth stressing that the above notions of safety and weak safety are protocol
independent: they concern all consensus protocols where validation depends locally on the
values relayed by trusted nodes on a given BTN, like the Ripple or Stellar protocols.7

3 (De)centralisation and (In)tractability

This section explores inherent limitations present in the above notion of safety for BTNs,
establishing general limitative results for the class of consensus protocols based on them, such
as Ripple and Stellar. First, it focuses on uniform QBTNs (Definition 5), as exemplified by
the Ripple consensus protocol, showing that safety drastically limits the freedom of nodes in
selecting trustees. Second, it focuses on safety for general BTNs (Definition 3), as exemplified
by the Stellar consensus protocol, showing that, even though safety in such settings allows
for more freedom on the part of nodes, it does require single nodes to solve decision problems
that are, in principle, computationally intractable.

3.1 Safety Implies Centralization in Uniform QBTNs
We show that the safety of uniform QBTNs implies that nodes cannot be fully free to choose
their trust set. The result builds on ideas and techniques from [6].

We first define some notation:

βij = min {|Ti ∩ Tj |, b · |Ti|, b · |Tj |} . (2)

7 However, it is worth stressing we are not considering protocols where validation may depend on
information richer than just nodes’ opinions.

Tokenomics 2020

5:8 Decentralization in Open Quorum Systems

Intuitively, βij denotes the maximum possible number of Byzantine nodes present in the
intersection of the trust sets of i and j. Such a number equals the maximum amount of
Byzantine nodes assumed by the node, either i or j, that tolerates fewer Byzantine nodes.
Such a number cannot obviously exceed the size of the intersection itself.

I Lemma 12 ([6]). Let 〈N,H, Ti, qi〉 be an effective QBTN. For any profile o and node
i ∈ H, if |T o

i (x)| > 0 then for any j ∈ H,

|T o
j (x) ∩H| ≥ |Ti ∩ Tj |+ |T o

i (x)| − |Ti| − βij (3)
|T o
j (x)| ≤ |Tj | − |Ti ∩ Tj | − |T o

i (x)|+ |Ti|+ βij (4)

This lemma establishes a lower bound on the number of honest nodes with opinion x that a
honest node j can observe in its trust set, given the number of nodes (not necessarily honest)
that another honest node i observes. It is used in the proof of Lemma 14. Notice that the
bound in (3) and (4) are not necessarily strict, as illustrated in the following example.

I Example 13. Let 〈N,H, Ti, qi〉 be such that: N = {1, . . . , 9}, B = {5} (recall N = H ∪B),
T1 = T2 = T3 = T4 = {1, 2, 3, 4, 5} and T6 = T7 = T8 = T9 = {5, 6, 7, 8, 9}, q1 = q2 =
q4 = q5 = 1 − 1

9 . Let then o be such that o(1) = o(2) = o(3) = o(4) = 1, o(6) = o(7) =
o(8) = o(9) = 0, finally o(5) be such that o(5)(1) = o(5)(2) = o(5)(3) = o(5)(4) = 0
and o(5)(6) = o(5)(7) = o(5)(8) = o(5)(9) = 1. So no honest node in {1, 2, 3, 4, 5} can
see a honest node with opinion 0 and, vice versa, no honest node in {5, 6, 7, 8, 9} can see a
honest node with opinion 1. But honest nodes in both set can see a (Byzantine) node with
opposite opinion. Let now j = 1 and i = 2. We have, |T 1

j ∩H| = 5 + 5 − 5 − 1 = 4 and
|T 0
j | = 5− 5− 5 + 5 + 1 = 1.

I Lemma 14. Let T = 〈N,H, Ti, qi〉 be a safe, uniform and effective QBTN. Then for all
i, j ∈ H: |Ti ∩ Tj | > b

1−b · (|Ti|+ |Tj |).

Notice that the maximum size of the intersection of two trust sets is obviously 1
2 (|Ti|+ |Tj |).8

Lemma 14 establishes a lower bound on the size of the intersection of trust sets required by
safety. The intuition behind the lemma is the following one. In order to make it impossible
for two honest nodes to validate opposite values, their trust sets should intersect to the
extent that any two winning coalitions for the two nodes would also have to intersect and
contain at least one honest node.

I Lemma 15. Let 〈N,H, Ti, qi〉 be a uniform BTN. If for all i, j ∈ H, |Ti ∩ Tj | > 0.25 ·
(|Ti|+ |Tj |), then

⋂
i∈H Ti 6= ∅.

Intuitively, if any two trust sets have a large enough intersection (larger than a quarter of
their combined size or, equivalently, larger than half their average size) then they must all
intersect.

I Theorem 16. In uniform QBTNs with effective quotas, if b ≥ 0.2 then safety implies the
existence of nodes that are trusted by all honest nodes.

Proof. The result follows directly from Lemmas 14 and 15 and the observations that: in
effective QBTNs where b ≥ 0.2 it follows that b ≤ 0.25; and for b ∈ [0.2, 0.25] we have that
b

1−b ≥ 0.25 as desired. J

8 This is the case, for instance, in QBTNs where |Ti| = |Tj | for all i, j ∈ H.

A. Bracciali, D. Grossi, and R. de Haan 5:9

1

2 3

4

5 6

Figure 1 Example from [28] of a vetoed BTN lacking QI. Arrows denote which nodes each node
trusts (reflexive arrows omitted). C(1) = C(2) = C(3) = {{1, 2, 3}} and C(4) = C(5) = C(6) =
{{4, 5, 6}}.

If we understand decentralisation as the property of trust networks in which nodes have
full freedom on whom to trust in the network, then the theorem can be interpreted as a
general impossibility result for consensus based on QBTNs: if quotas are uniform and set
appropriately w.r.t. the postulated maximum share of Byzantine nodes in trust sets, and
if such share is large enough, then the existence of nodes that are trusted by everyone is a
necessary condition for the safety of consensus. Furthermore, beyond limiting the choice of
nodes, a (limited) set of such nodes clearly represents a dominant position and a risk factor.

In general, Theorem 16 is relevant for any consensus protocol that could be run on uniform
QBTNs. In particular, it applies to the Ripple consensus protocol when the maximum
fraction b of Byzantine nodes in trust sets is set to 0.2. In a way, Theorem 16 provides an
ex-post analytical justification to the current design of the Ripple trust network where all
trust sets are required to include a same subset of nodes (cf. [6]). Currently Ripple relies on
a single UNL mostly controlled by Ripple, although plans for further decentralisation are
under discussion.9

3.2 Safety and Quorum Intersection in BTNs
In this and the next section we consider the general case of (vetoed) BTNs, to which Theorem
16 does not apply. This more general setting applies instead to Stellar as described in its
white paper [28], where the Stellar consensus protocol does not presuppose uniformity of
quotas. Actually, Stellar aims to offer open membership and freedom in choosing its own
trust networks, which, together with BFT good scalability, would yield a decentralised and
efficient blockchain. In such a setting an intuitive necessary condition for safety is that trust
networks are sufficiently “interconnected”, in the following sense.

I Definition 17 ([28]). A vetoed BTN enjoys quorum intersection (QI) whenever for any
two sets Q1, Q2 ⊆ H, if Q1 and Q2 are quora, then Q1 ∩Q2 6= ∅.

I Example 18. In Figure 1 the quora are {1, 2, 3}, {4, 5, 6}, {1, 2, 3, 4, 5, 6}. This BTN does
not enjoy QI, but both of its disjoint components (with support {1, 2, 3} and {4, 5, 6}) do.
Suppose instead that {1, 2, 3, 5} ∈ C(3), that is, 3 also trusts 5. Then the system would
satisfy QI with quora: {4, 5, 6}, {1, 2, 3, 4, 5, 6}.

I Example 19. In a BTN T where ∀i ∈ N , C(i) = {N}, the set N of all nodes is the unique
quorum, and T trivially enjoys quorum intersection.

In fact, there is a close relationship between quorum intersection and the property of
weak safety:

I Theorem 20. A vetoed BTN is weakly safe iff any two quora intersect and such intersection
contains at least one honest node.

9 Cf. https://xrpcharts.ripple.com/.

Tokenomics 2020

https://xrpcharts.ripple.com/

5:10 Decentralization in Open Quorum Systems

Clearly, nodes in a BTN cannot know which nodes are Byzantine so their best effort in order
to guarantee weak safety is to guarantee QI is not violated.10

3.3 The Intractability of Maintaining Quorum Intersection

Quorum intersection is in fact assumed by all the existing correctness analyses of Stellar
[28, 17]. It is furthermore stressed in [28, p. 9] that: “[. . .] it is the responsibility of each node
i to ensure Ci [notation adapted] does not violate quorum intersection.” The key question,
from a safety perspective, becomes therefore whether single nodes can reasonably be tasked
with maintaining QI. Apart from incentive issues, which have also been flagged [23], we argue
that this is a problematic requirement from a merely computational standpoint. This might
not be an issue in the current, small-scale, Stellar configuration (although an instance of
QI failure has been recently reported [26]), but it is something to be considered in a path
towards full decentralisation with a full-scale number of nodes and validators. As our analysis
below shows, maintaining QI is a computationally intractable problem.

We present two results. First we show that deciding whether a given BTN satisfies QI is
intractable.11 Second, we show that deciding whether adding a new trust set with winning
coalitions preserves QI on a given BTN is also computationally intractable (again coNP-hard).
This is arguably the decision problem that nodes need to solve when linking to the Stellar
network. We argue that these results point to a possible computational bottleneck for the
scalability of the consensus model of Stellar.

We first define the problem of deciding whether QI holds in a given BTN.
Quorum-Intersection

Input: A BTN T = 〈N, C〉 where the sets C(i) for i ∈ N are listed explicitly.12

Question: Is it the case that for each two quora Q1, Q2, Q1 ∩Q2 6= ∅?

I Theorem 21. Quorum-Intersection is coNP-complete.

The intractability result of Theorem 21 says that it may be computationally hard, in
practice, to check QI. Such a result is robust in the sense that the related problem of checking
whether QI holds after the insertion of one new winning coalition by a node into a system
that already satisfies QI, is also coNP-complete. (actually coNP-hard).

Coalition-Addition-Quorum-Intersection

Input: Two BTNs T = 〈N, C〉 and T ′ = 〈N, C′〉, such that T ′ satisfies QI, and such
that T is obtained from T ′ by adding one single coalition to C′(i) for some i ∈ N , where
the sets C(i) and C′(i) for all i ∈ N are listed explicitly.
Question: Is it the case that for each two quora Q1, Q2 of T Q1 ∩Q2 6= ∅?

I Theorem 22. Coalition-Addition-Quorum-Intersection is coNP-complete.

10However, a BTN could be complemented by a more fine-grained failure model consisting of a set of sets
of possible Byzantine nodes representing the possible failure scenarios that nodes may encounter (cf.
[17]).

11An equivalent result has also been recently presented in [24]. That paper provides a proof of NP-
completeness (via reduction from the Set Splitting Problem) of the complementary problem for which
we prove coNP-completeness (via 3SAT).

12For the purpose of this and the following result we do not need to take into consideration the H and Ti

elements of a BTN (Definition 3). We therefore omit them for conciseness.

A. Bracciali, D. Grossi, and R. de Haan 5:11

4 Quantifying Influence on Consensus in BTNs

Theorem 16 showed that, in uniform QBTNs, safety implies the existence of nodes that
are trusted by all honest nodes. While this can definitely be interpreted as a high level
of centralisation required by safety, it is worth trying to precisely quantify the effect that
the existence of all-trusted nodes has on consensus. In PoW and PoS protocols it is
straightforward, at least by first approximation, to understand what the influence of each
node is on the consensus process: each node will be able to determine a fraction of blocks
corresponding to the node’s share of total hashing power (PoW) or of total stakes (PoS). For
consensus based on voting over trust structures, like in Ripple and Stellar, quantifying nodes’
influence in a principled way is not obvious. This section proposes a methodology for such
quantification that leverages the theory of voting games.

4.1 Influence Matrices
A BTN (Definition 3) associates to each honest node i a structure 〈Ti, Ci〉. Such structures are
known in game theory as simple games, that is a set of agents endowed with a set of winning
coalitions. Such structures have been extensively studied to provide exact quantifications
of power, for instance, in voting. In this section we show how techniques based on simple
games provide a principled way to quantify influence in BTNs. We study the influence of j
over i in a BTN as the power of j in the simple game that the BTN associates to i.

The Penrose-Banzhaf index [33, 1] of a node j in the simple game 〈Ti, Ci〉 of node i is

Bi(j) = 1
2n−1

∑
C⊆N\{j}

v(C ∪ {j})− v(C) (5)

where v is the characteristic function of Ci.13 Essentially, the index counts the number of
times in which j is decisive in turning a losing coalition into a winning one, that is, one that
can determine the validation of an opinion by i. Equivalently, Bi(j) can be interpreted as
the probability that j determines whether i validates a specific opinion, assuming all other
agents in Ti have opinions distributed uniformly at random.

The normalised version NBi(j) of the Penrose-Banzhaf index is:

NBi(j) = Bi(j)∑
k∈N Bi(k) (6)

For any agent j 6∈ Ti we stipulate NB(j) = 0, as nodes that i does not trust cannot
influence i’s opinion directly – in game-theoretic jargon they are “dummy agents” in i’s
simple game. Byzantine nodes are assigned degenerate simple games containing a singleton
winning coalition that has themselves as only member (cf. Remark 7 above). Byzantine
agents cannot be influenced: for all i ∈ N\H from the degenerate simple game associated to
i, NBi(i) = 1, and NBi(j) = 0 for each j 6= i.

Given a BTN, we associate to each honest node i a vector [NBi(1), . . . ,NBi(n)] of
normalized Penrose-Banzhaf indices capturing the influence that each node has on i. Clearly∑
j∈N NBi(j) = 1 and NB(j) > 0 only if j ∈ Ti, for any i ∈ N . Notice that the vector of

a Byzantine node i is therefore degenerate: NBi(i) = 1 and NBi(j) = 0 for each j 6= i. It

13That is, for any C ⊆ N , v(C) = 1 iff C ∈ Ci.

Tokenomics 2020

5:12 Decentralization in Open Quorum Systems

follows that each BTN T induces a stochastic N ×N matrix

I(T) =


I11 I12 I13 . . . I1n
I21 I22 I23 . . . I2n
...

...
...

. . .
...

In1 In2 In3 . . . Inn


where Iij denotes the normalized Penrose-Banzhaf index NBi(j) of node j in the simple
game associated to i. We call such matrix I(T) = [Iij]i,j∈N the influence matrix (of T). We
will drop reference to T when no confusion arises. The matrix encodes the direct influence
that each node has on each other in the sense of being decisive for the validation of an
opinion. Matrices of this type have a long history in the mathematical modeling of influence
in economics and the social sciences dating back to [13, 7], and have recently received renewed
attention [21].14 Similar matrices, but based on the Shapley-Shubik power index [38] instead
of the Penrose-Banzhaf one, have been studied in [20, 19].15

I Example 23. Consider the following BTN with no Byzantine nodes and consisting
of 6 agents all having a same set of 5 agents as trust set: N = H = {1, 2, 3, 4, 5, 6},
Ti = {1, 2, 3, 4, 5} for all i ∈ N and qi = 0.8 for all i ∈ N . By (5) and (6) for each
i ∈ {1, 2, 3, 4, 5, 6} we have Bj(i) = 2

8 and NBj(i) = 1
5 , for each node j ∈ {1, 2, 3, 4, 5}. The

influence matrix describing this BTN consists of 6 identical row vectors
[1

5
1
5

1
5

1
5

1
5 0.

]
Consider now a variant of the above BTN where node 5 is Byzantine. The influence matrix
describing this variant consists of 5 identical vectors

[1
5

1
5

1
5

1
5

1
5 0.

]
for the rows

corresponding to nodes 1− 4 and 6, and the degenerate row vector
[
0 0 0 0 1 0.

]
for

the row of node 5. That is, all the nodes in Ti have the same influence on honest nodes, but
no honest node influences 5.

4.2 Limit Influence
Influence matrices describe the extent of direct influence between nodes. But influence is not
only direct: by influencing nodes k that in turn influence node i, a node j can exert indirect
influence on the opinions that i validates. This type of indirect influence is captured by the
powers of the influence matrix:
I1
ij = Iij represents the probability that j can directly sway i to validate a value x. This is
j’s direct influence on i.

I2
ij =

∑
k∈N Iik · Ikj represents the probability that j can sway i’s validation in two steps, by

swaying the validation of intermediate nodes k which in turn sway i’s validation directly.
This is j’s indirect (2-step) influence on i.

Ikij more generally represents j’s indirect (k-step) influence on i.
So the influence (direct or indirect) of j on i in a BTN is given by the total probability
of all ways in which j can determine the value of i’s validation. Formally this amounts to
limt→∞(It)ij , provided such limit exists. In yet other words, this denotes the likelihood that
j is decisive for i to validate an opinion.

We are then in the position to quantify what the influence is of each node on every other
node by taking the limit of the power of the influence matrix of the BTN T , that is:

I(T)∞ = lim
t→∞

I(T)t (7)

14 See also [34, 35] for an overview of such models.
15For a comparison between these two power indeces we refer the reader to [11].

A. Bracciali, D. Grossi, and R. de Haan 5:13

If the limit matrix in (7) exists, we say that the influence matrix I(T) is regular. We say
that it is fully regular when its limit matrix exists and it is such that all rows are identical.16
Intuitively, regularity means that it is possible to precisely quantify the influence of each
node on each other node; full regularity means that every node has the same influence on
every other node.

I Example 24. Consider again the two BTNs introduced in Example 23. In the first case,
where all nodes are honest, all nodes belonging to some trust set have positive and – given
the symmetry built in the example – the same influence:

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0


=



1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0



2

= lim
t→∞



1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0



t

In the second case, where node 5 is Byzantine, the only node having positive influence (total
influence 1 in this example) is precisely 5:

lim
t→∞



1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

0 0 0 0 1 0
1
5

1
5

1
5

1
5

1
5 0



t

=



0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0


In other words, the only node having influence on which values will be validated by other
nodes, and therefore on agreement, is the Byzantine node.

4.3 Limit Influence in Ripple and Stellar
Theorem 16 established that in uniform QBTNs, and therefore Ripple, safety requires
centralisation in the sense of demanding the existence of a non-empty set of nodes trusted
by all other nodes. While this does not apply in general to Stellar, recent studies have
highlighted that Stellar enjoys a similar level of centralisation.17

Here we put the above methodology at work to study limit influence in centralised BTNs,
that is BTNs where nodes exist that are trusted by all nodes. We show (Theorem 25) that:
the existence of nodes trusted by all nodes makes it possible to establish limit influence (first
claim); this limit influence is such that every node has the same limit influence on every
other node (second claim) when at most one Byzantine node exists in the BTN; but if only
just one all-trusted node trusts a Byzantine node, no honest node has limit influence on any
other honest node (third claim). That is, in a centralised BTN the power of deciding whether
an opinion can become consensus or not is, in principle, all in the hands of Byzantine nodes.

16The “regularity” and “full regularity” terminology are borrowed from [14] and [34].
17Data analysis of the current Stellar network has shown [23] that one of the three Stellar foundations

validators is included in all trust sets. If we treat the Stellar foundation to be operating as one node,
Stellar satisfies de facto the same level of centralisation that we have shown is analytically required for
Ripple.

Tokenomics 2020

5:14 Decentralization in Open Quorum Systems

I Theorem 25. Let T be a BTN. If T is such that
⋂
i∈H Ti 6= ∅ then:

1) I(T) is regular;
2) I(T) is fully regular if in addition T is such that |B| ≤ 1;
3) and, if there exists j ∈

(⋂
i∈H Ti

)
∩ H such that Tj ∩ B 6= ∅ then for all j, k ∈ H,

I(T)∞jk = 0.
Again, it is worth noticing that this is a general protocol-independent result: it concerns all
protocols working on centralized BTNs where consensus is determined through validations
locally dependent on trusted nodes. In particular, it applies to the setup of the Ripple trust
network under the assumption of safety (by Theorem 16) and to the current setup of the
Stellar trust network.

5 Conclusions

We addressed decentralisation in the specific context of BFT consensus based on open quorum
systems, showcasing the relevance of tools from economic theory (command games, power
indices) and computational complexity theory. In doing so we focused on a general class of
consensus, linking decentralisation to a precise measure of the influence of each peer in the
network (a theme extensively studied in economics), an analysis of the structural properties
of the consensus network, and the computational complexity of problems related to safe
consensus. The obtained limiting results on Ripple and Stellar are coherent with the current
practice and the proposals that industry is putting forward to improve decentralisation. We
argue that the obtained results show this is a promising approach to the formal analysis of
decentralisation.

Our results point to several avenues of future research. We are planning to extend our
analysis to other blockchains based on BFT consensus that are currently being developed,
noticeably Cobalt [10] as an evolution of the Ripple/Stellar tradition. More generally, we also
want to explore the applicability of the methodology beyond the framework of Byzantine trust
networks, since measures of the relative influence of peers are of interest for other blockchain
frameworks, e.g. PoS. At the same time, we also intend to build on such measures to
address the relationships between influence, decentralisation and, crucially, revenue. Properly
understanding such mechanisms will serve to the long-term goal of designing more reliable
and robust blockchains. On the application side, the development of a prototype analysis
toolkit and collection of relevant data is also an ongoing activity.

References
1 J. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgeres Law Review,

19:317–343, 1965.
2 J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. Kroll, and E. Felten. Sok: Research

perspectives and challenges for bitcoin and cryptocurrencies. In Security and Privacy (SP),
2015 IEEE Symposium on, pages 104–121. IEEE, 2015.

3 F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, editors. Handbook of Compu-
tational Social Choice. Cambridge University Press, 2016.

4 C. Cachin and M. Vukolic. Blockchain consensus protocols in the wild. Technical report,
CoRR abs/1707.01873, 2017.

5 M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and Implementation, OSDI ’99, pages 173–186,
Berkeley, CA, USA, 1999. USENIX Association. URL: http://dl.acm.org/citation.cfm?
id=296806.296824.

http://dl.acm.org/citation.cfm?id=296806.296824
http://dl.acm.org/citation.cfm?id=296806.296824

A. Bracciali, D. Grossi, and R. de Haan 5:15

6 B. Chase and MacBrough E. Analysis of the XRP ledger consensus protocol. Technical report,
Ripple Research, 2018.

7 Morris H. DeGroot. Reaching a Consensus. Journal of the American Statistical Association,
69(345):118–121, 1974.

8 D. Dolev. Byzantine generals stike again. Journal of Algorithms, 3(1):14–30, 1982.
9 C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Ernest F. Brickell,

editor, Advances in Cryptology — CRYPTO’ 92, pages 139–147, Berlin, Heidelberg, 1993.
Springer Berlin Heidelberg.

10 MacBrough E. Cobalt: BFT governance in open networks. Technical report, Ripple Research,
2018.

11 D. Felsenthal and M. Machover. The Measurement of Voting Power. Edward Elgar Publishing,
1998.

12 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.214121.

13 J. French. A formal theory of social power. Psychological Review, 61:181–194, 1956.
14 F. Gantmacher. The Theory of Matrices. AMS Chealsea Publishing, 1959.
15 J. Garay, A. Kiayias, and Nikos L. The bitcoin backbone protocol: Analysis and applications.

In E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015. Springer,
2015. doi:10.1007/978-3-662-46803-6_10.

16 H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. J. ACM,
32(4):841–860, October 1985. doi:10.1145/4221.4223.

17 C. García-Pérez and A. Gotsman. Federated Byzantine Quorum Systems. In J. Cao,
F. Ellen, L. Rodrigues, and B. Ferreira, editors, 22nd International Conference on Prin-
ciples of Distributed Systems (OPODIS 2018), volume 125 of LIPIcs, pages 17:1–17:16, 2018.
doi:10.4230/LIPIcs.OPODIS.2018.17.

18 U. Grandi. Social choice on social networks. In U. Endriss, editor, Trends in Computational
Social Choice, pages 169–184. COST, 2018.

19 X. Hu and L. Shapley. On authority distributions in organizations: Controls. Games and
Economic Behavior, 45:153–170, 2003.

20 X. Hu and L. Shapley. On authority distributions in organizations: Equilibrium. Games and
Economic Behavior, 45:132–152, 2003.

21 M. O. Jackson. Social and Economic Networks. Princeton University Press, Princeton, NJ,
USA, 2008.

22 D. Karos and H. Peters. Indirect control and power in mutual control structures. Games and
Economic Behavior, 92, 2015.

23 M. Kim, Y. Kwon, and Y. Kim. Is stellar as secure as you think? In IEEE Security and
Privacy on the Blockchain (IEEE S&B ’19). IEEE, 2019.

24 L. Lachowski. Complexity of the quorum intersection property of the federated byzantine
agreement system, 2019. URL: https://arxiv.org/abs/1902.06493.

25 L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions
on Programming Languages and Systems, 4(3):382–401, 1982.

26 M. Lokhava, G. Losa, D. Maziéres, G. Hoare, N. Barry, E. Gafni, J. Jove, and Jed McCaleb
R. Malinowsky. Fast and secure global payments with Stellar. In Proceedings of SOSP’19.
ACM, 2019.

27 D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11:203–213,
1998.

28 D. Mazierès. The stellar consensus protocol: A federated model for internet-level consensus.
Stellar Development Foundation, 2016.

29 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Bitcoin project white paper,
2009.

30 A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and Cryptocurrency
Technologies. Princeton University Press, 2016.

Tokenomics 2020

https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1145/4221.4223
https://doi.org/10.4230/LIPIcs.OPODIS.2018.17
https://arxiv.org/abs/1902.06493

5:16 Decentralization in Open Quorum Systems

31 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the Association for Computing Machinery, 27(2):228–234, 1980.

32 D. Peleg. Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput.
Sci., 282(2):231–257, 2002.

33 L. Penrose. The elementary statistics of majority voting. Journal of the Royal Statistical
Society, 109(1):53–57, 1946.

34 A. Proskurnikov and R. Tempo. A tutorial on modeling and analysis of dynamic social
networks. Part I. Annual Reviews in Control, 43:65–79, 2017.

35 A. Proskurnikov and R. Tempo. A tutorial on modeling and analysis of dynamic social
networks. Part II. Annual Reviews in Control, 45:166–190, 2018.

36 F. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys, 22(4):299–319, 1990.

37 D. Schwartz, N. Youngs, and A. Britto. The ripple protocol consensus algorithm. Technical
report, Ripple Labs, 2014.

38 L. Shapley and M. Shubik. A method for evaluating the distribution of power in a committee
system. American Political Science Review, 48:787–792, 1954.

39 M. Vukolic. Quorum Systems with Applications to Storage and Consensus. Morgan & Claypool
Publishers, 2012.

40 M. Vukolic. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In
Proceedings of iNetSec’15, volume 9591 of LNCS, pages 112–125, 2015.

41 R. Wattenhofer. Distributed Ledger Technology: The Science of the Blockchain. Createspace
Independent Publishing Platform, 2017.

A Technical appendix

A.1 Proofs of Section 2
A.1.1 Lemma 12
Proof. (3) By assumption |T o

i (x)| > 0. So j observes at least |T o
i (x) ∩ Tj ∩H| nodes with

opinion x in Tj . Those are the honest nodes among the nodes with opinion x that both i
and j can observe. So

|T o
j (x) ∩H| ≥ |T o

i (x) ∩ Tj ∩H|.

Now among the nodes in T o
i (x) ∩ Tj there are at most βij Byzantine nodes that could reveal

the opposite opinion x to j. So,

|T o
i (x) ∩ Tj ∩H| ≥ |T o

i (x) ∩ Tj | − βij .

The claim is finally established by the following series of (in)equalities:

|T o
i (x) ∩ Tj ∩H| ≥ |T o

i (x) ∩ Tj | − βij
≥ |T o

i (x)| − |Ti\Tj | − βij
= |T o

i (x)| − |Ti|+ |Ti ∩ Tj | − βij

(4) By assumption |T o
i (x)| > 0. So, by (3), |T o

j (x)∩H| = |Ti ∩Tj |+ |T o
i (x)| − |Ti| −βij

whenever only the honest nodes in Tj have opinion x. It follows that

|T o
j (x)| ≤ |Tj | − (|Ti ∩ Tj |+ |T o

i (x)| − |Ti| − βij)
= |Tj | − |Ti ∩ Tj | − |T o

i (x)|+ |Ti|+ βij .

This completes the proof. J

A. Bracciali, D. Grossi, and R. de Haan 5:17

A.1.2 Lemma 14
Proof. The proof consists of two sub-arguments. First we show that safety implies that,
for all i, j ∈ H:

|Ti ∩ Tj | > b · (|Ti|+ |Tj |) + βij (8)

By safety (Definition 11), if |T o
i (x)| ≥ qi|Ti| with i ∈ H, then for all j ∈ H T o

j (x) < q|Tj |.
Assume T o

i (x) ≥ q|Ti| with i ∈ H. By Lemma 12 and safety we have:

T o
j (x) ≤ |Tj | − |Ti ∩ Tj | − q|Ti|+ |Ti|+ βij

< q|Tj |.

From |Tj | − |Ti ∩ Tj | − q|Ti|+ |Ti|+ βij < q|Tj | and the assumption on the effectiveness of q
(that is, q ∈ (0.5 + b, 1− b]) we thus obtain

b · (|Ti|+ |Tj |) + βij ≤ (1− q) · (|Ti|+ |Tj |) + βij

= |Tj | − q|Tj | − q|Ti|+ |Ti|+ βij

< |Ti ∩ Tj |

as desired.18
Second We show that safety also implies that, for all i, j ∈ H:

b · (|Ti|+ |Tj |) + βij >
b

1− b (|Ti|+ |Tj |) (9)

We have established that safety implies that for all i, j ∈ H, |Ti∩Tj | > b ·(|Ti|+ |Tj |)+βij
(8), that is, the size of the intersection of the trust sets of i and j should be larger than the
maximum possible fraction of Byzantine nodes times the combined size of the trust sets, plus
βij . Now recall the definition of βij (2). By (8) it cannot be the case that βij = |Ti ∩ Tj |. So
βij = b|Tk| where Tk is the the smallest set between Ti and Tj . Now assume, w.l.o.g. that
|Ti| ≥ |Tj | and so that |Tj | = x · |Ti| with x ∈ (0, 1]. By (8) we have:

|Ti ∩ Tj | > b(|Ti|+ |Tj |) + βij

= b(|Ti|+ x|Ti|) + bx|Ti|
= b|Ti|(1 + 2x)

From this, and the fact that a set is always at least as large as its intersection with another
we obtain a lower bound for x by the following series of inequalities:

x|Ti| ≥ |Ti ∩ Tj |
x|Ti| > b|Ti|(1 + 2x)

x > b(1 + 2x)
x > b+ 2bx

x− 2bx > b

x(1− 2b) > b

x >
b

1− 2b

18Cf. [6, Proposition 4].

Tokenomics 2020

5:18 Decentralization in Open Quorum Systems

By substituting b
1−2b for x in (8) we thus obtain a lower bound for |Ti ∩ Tj | in b. We then

reformulate (8) in terms of the combined size α = |Ti|+ |Tj | of the two trust sets:

|Ti ∩ Tj | > b(|Ti|+ x|Ti|︸ ︷︷ ︸
α

) + bx|Ti|

> b(|Ti|+
b

1− 2b |Ti|) + b
b

1− 2b |Ti|

= bα+ b
b

1− 2b
1− 2b
1− b α as|Ti| = α

1− 2b
1− b

= bα(1 + b

1− b)

= b

1− bα

So safety implies that the size of the intersection of Ti and Tj must be larger than the fraction
b

1−b of the combined size of the two sets. J

A.1.3 Lemma 15
Proof. The proof is by induction on |H|. Base if |H| = 1 the claim holds trivially. Step
Now assume the claim holds for |H| = m (IH). We prove it holds for |H| = m+ 1. So assume
for all i, j ∈ H, |Ti ∩ Tj | > 0.25 · (|Ti|+ |Tj |), and let k be the m+ 1th node in H. By IH we
know that

⋂
i∈H\{k} Ti 6= ∅. Now take one of the smallest (w.r.t. size) Ti with i ∈ H\ {k}

and call it Tj . There are two cases. |Tk| ≤ |Tj | . Then |Tj ∩ Tk| > 0.5 · |Tk|. Since Tj
was smallest amongst the Ti, it also hols that ∀i ∈ H |Ti ∩ Tk| > 0.5 · |Tk|. From this we
conclude that

⋂
i∈H Ti 6= ∅. |Tk| > |Tj | Then |Tj ∩ Tk| > 0.5 · |Tj |. Since Tj was smallest

amongst the Ti, it also hols that ∀i ∈ H |Ti ∩ Tj | > 0.5 · |Tj |, from which we also conclude⋂
i∈H Ti 6= ∅. J

A.1.4 Theorem 20
Proof. Left to right Straightforwardly proven by contraposition. Right to left Proceed
by contraposition and assume there is a profile o, a function s and agents 1 and 2 such that
all k ∈ C1 = F ?s ({1}) agree on x and all k ∈ C2 = F ?s ({2}) agree on x. Observe that C1 and
C2 are quora containing (since the BTN is vetoed) 1 and 2. There are two cases. Either
C1 ∩ C2 = ∅, or if that is not the case then C1 ∩ C2 ⊆ B as only Byzantine nodes can reveal
different opinions to different nodes. Hence C1 and C2 are either disjoint or their intersection
contains only Byzantine nodes. J

A.1.5 Theorem 21
Proof. To see that the problem is contained in coNP, we describe a nondeterministic
polynomial-time algorithm to decide whether T = 〈N, C〉 does not have the quorum intersec-
tion property. The algorithm guesses two disjoint sets Q1, Q2 ⊆ N . Then, for each u ∈ [2]
and for each i ∈ Qu, the algorithm checks if there is some C ∈ C(i) such that C ⊆ Qu. That
is, the algorithm verifies that Q1 and Q2 are quora (which is the case if and only if all checks
succeed). Clearly, all checks can be performed in polynomial time. Thus, deciding whether T
has the quorum intersection property is in coNP.

To show coNP-hardness, we reduce from the coNP-complete propositional unsatisfia-
bility problem (UNSAT). Let ϕ be a propositional formula containing the propositional

A. Bracciali, D. Grossi, and R. de Haan 5:19

variables x1, . . . , xn. Without loss of generality, we may assume that ϕ is in 3CNF, i.e.,
that ϕ = c1 ∧ · · · ∧ cm and that for each j ∈ [m], cj = (Tj,1 ∨Tj,2 ∨Tj,3), where Tj,1, Tj,2, Tj,3
are literals. We construct a command game T = 〈N, C〉 that has the quorum intersection
property if and only if ϕ is unsatisfiable.

We let:

N = {z0, z1} ∪ {cj | j ∈ [m]} ∪ {yi, pi, ni | i ∈ [n]}.

That is, we have nodes z0, z1, a node cj for each clause of ϕ, and nodes yi, pi, ni for each
variable occurring in ϕ.

We define the sets of winning coalitions of the nodes in N as follows:

C(z0) = {{z0, y1, . . . , yn}};
C(z1) = {{z1, c1, . . . , cm}};
C(yi) = {{yi, pi}, {yi, ni}} foreach i ∈ [n];
C(cj) = {{cj , σ(Tj,1)}, {cj , σ(Tj,2)}, {cj , σ(Tj,3)}} foreach j ∈ [m];
C(pi) = {{pi, z0}, {pi, z1}} foreach i ∈ [n]; and
C(ni) = {{ni, z0}, {ni, z1}} foreach i ∈ [n];

where for each positive literal xi, we let σ(xi) = pi; and for each negative literal ¬xi, we
let σ(¬xi) = ni.

We argue that T = 〈N, C〉 has the quorum intersection property if and only if ϕ is
unsatisfiable. We show the equivalent statement that T = 〈N, C〉 does not have the quorum
intersection property if and only if ϕ is satisfiable.

(⇒) Suppose that there exist Q1, Q2 ∈ QT such that Q1 ∩ Q2 = ∅. We may assume
without loss of generality that Q1 and Q2 are core quora. We know that neither Q1 nor Q2
can contain both z0 and z1, because each quorum of T must contain either z0 or z1 (by the
specific construction of T). Thus, we may assume that z0 ∈ Q2 and z1 ∈ Q1.

Then also {y1, . . . , yn} ⊆ Q2. Moreover, for each i ∈ [n], we know that then either pi ∈ Q2
or ni ∈ Q2 (and not both). We also know that {c1, . . . , cm} ⊆ Q1. Now define the truth
assignment α : {x1, . . . , xn} → {0, 1} as follows. For each i ∈ [n], we let α(xi) = 1 if ni ∈ Q2
and we let α(xi) = 0 if pi ∈ Q2.

We show that α satisfies ϕ. Take an arbitrary clause cj of ϕ. Due to the construction
of C(cj), we know that Q1 contains (at least) one of σ(Tj,1), σ(Tj,2), σ(Tj,3). Take some u ∈ [3]
such that σ(Tj,u) ∈ Q1. We show that α satisfies Tj,u. To derive a contradiction, suppose
the contrary, i.e., that α does not satisfy Tj,u. Then σ(Tj,u) ∈ Q2 (by the construction of α),
and thus Q1 ∩Q2 6= ∅, which contradicts our initial assumption that Q1 ∩Q2 = ∅. Thus, we
can conclude that α satisfies Tj,u. This concludes our proof that ϕ is satisfiable.

(⇐) Conversely, suppose that ϕ is satisfiable, i.e., that there is some truth assignment α :
{x1, . . . , xn} → {0, 1} that satisfies all clauses of ϕ. For each clause cj , define ρ(cj) to be
some literal Tj,u in cj that is satisfied by α. Moreover, for each i ∈ [n], let µ(xi) = ni
if α(xi) = 1 and µ(xi) = pi if α(xi) = 0. Consider the following two sets Q1, Q2 ⊆ N :

Q1 = {z1, c1, . . . , cm} ∪ {σ(ρ(cj)) | j ∈ [m]}; and
Q2 = {z0, y1, . . . , yn} ∪ {µ(xi) | i ∈ [n]};

It is straightforward to verify that Q1 and Q2 are both quora, i.e., that Q1, Q2 ∈ QT .
Moreover, since it holds that Q1 ∩ Q2 = ∅, we know that T does not satisfy the quorum
intersection property. J

Tokenomics 2020

5:20 Decentralization in Open Quorum Systems

A.1.6 Theorem 22
Proof sketch. Membership in coNP follows directly from Proposition 21. We show coNP-
hardness by modifying the reduction given in the proof of Proposition 21. We describe
a reduction from UNSAT. Let ϕ be a propositional formula containing the propositional
variables x1, . . . , xn. Without loss of generality, we may assume that ϕ is in 3CNF. Moreover,
without loss of generality, we may assume that ϕ[x1 7→ 1] is unsatisfiable. We construct the
command game T = 〈N, C〉 as in the proof of Proposition 21. Moreover, we transform T
into T ′ by removing the coalition {y1, n1} from C(y1). By a similar argument as the one used
in the proof of Proposition 21, we know that the command game T ′ satisfies the quorum
intersection property, because ϕ[x1 7→ 1] is unsatisfiable. Moreover, T satisfies the quorum
intersection property if and only if ϕ is unsatisfiable. J

A.2 Proofs of Section 4
A.2.1 Theorem 25
Proof. We first need to introduce some auxiliary notation. Given an influence matrix I,
G(I) = 〈N,E〉 denotes the (directed) graph of I, where E = {ij | Iji > 0}. Intuitively ji ∈ E
whenever j influences i (i.e., has a positive Banzhaf-Penrose index in i’s simple game). By
assumption there exist nodes that influence all other honest nodes (themselves included). Let
now E(

⋂
i∈H Ti) =

{
i ∈ N | ∃j ∈

⋂
i∈H Ti, ij ∈ E

}
, that is, the set of nodes that influence

some node that influences all honest nodes. We distinguish three cases.
|B| = 0 So there are no Byzantine nodes in T , and N = H = E(

⋂
i∈H Ti) It follows

that G(I(T)) is strongly connected (there exists a path from every node to every node) and
aperiodic (there are no two cycles in the graph whose length is divided by an integer larger
than 1). Trivially, it is also closed (there exists no node outside G(I(T)) that influences
nodes in G(I(T))). The full regularity of I then follows from known results on influence
matrices (cf. [34, Lemma 11]): if G(I) contains only one strongly connected component and
is aperiodic, then I is fully regular.
|B| = 1 and E(

⋂
i∈H Ti) ∩B 6= ∅ So there exists exactly one Byzantine node in N , which

furthermore belongs to E(
⋂
i∈H Ti) (that is, it influences at least one honest node influencing

in turn all honest nodes). Call i such Byzantine agent. Recall that, by construction, ii ∈ E.
So the subgraph consisting of i and the self-loop ii is the only closed, aperiodic, strongly
connected component of G(I(T)). Full regularity therefore follows by know results as in the
previous case.
|B| ≥ 1 or E(

⋂
i∈H Ti) ∩B = ∅ So there exist several Byzantine nodes in N or there

are Byzantine nodes which do not influence nodes in
⋂
i∈H Ti. Both such cases determine the

existence, by arguments analogous to those provided for the previous two cases, of several
closed, aperiodic strongly connected components in G(I(T)). The regularity of I then follows
again from known results on influence matrices (cf. [34, Theorem 12], [21, Theorem 8.1]: if
all closed strongly connected components of G(I) are aperiodic, then I is regular.

In all three cases I is regular, proving claim 1). In the first two cases (|B| ≤ 1) I is
furthermore fully regular, establishing claim 2). Finally, to prove claim 3) we reason as
follows. If there exists a honest agent in

⋂
i∈H Ti trusting a Byzantine agent, then the only

closed strongly connected components of G(I) are the Byzantine nodes. In the limit, such
nodes will therefore be the only ones having positive influence. J

VeriOSS: Using the Blockchain to Foster
Bug Bounty Programs
Andrea Canidio
IMT School for Advanced Studies, Lucca, Italy
INSEAD, Fontainebleau, France
andrea.canidio@imtlucca.it

Gabriele Costa
IMT School for Advanced Studies, Lucca, Italy
gabriele.costa@imtlucca.it

Letterio Galletta
IMT School for Advanced Studies, Lucca, Italy
letterio.galletta@imtlucca.it

Abstract
Nowadays software is everywhere and this is particularly true for free and open source software
(FOSS). Discovering bugs in FOSS projects is of paramount importance and many bug bounty
programs attempt to attract skilled analysts by promising rewards. Nevertheless, developing an
effective bug bounty program is challenging. As a consequence, many programs fail to support an
efficient and fair bug bounty market. In this paper, we present VeriOSS, a novel bug bounty platform.
The idea behind VeriOSS is to exploit the blockchain technology to develop a fair and efficient bug
bounty market. To this aim, VeriOSS combines formal guarantees and economic incentives to ensure
that the bug disclosure is both reliable and convenient for the market actors.

2012 ACM Subject Classification Security and privacy → Software security engineering; Software
and its engineering → Formal software verification; Security and privacy → Economics of security
and privacy

Keywords and phrases Bug Bounty, Decentralized platforms, Symbolic-reverse debugging

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.6

Funding This research is partially funded by IMT PAI project “VeriOSS”.

1 Introduction

Free and open source software (FOSS) is becoming more and more popular.1 Operating
systems and applications that we use daily are often developed and maintained by consortia
of partner industries and communities of developers. FOSS is even mandatory in some cases,
e.g., cryptographic functions are publicly developed for transparency and revision.

Bug bounty programs are essential to attract skilled software analysts for the detection,
disclosure and correction of software errors. In a bug bounty program, a bounty issuer (BI)
offers a reward to any bounty hunter (BH) who discovers a bug in a piece of software. The
offered reward usually depends on the typology and criticality of the bug. For instance,
Google promises to pay up to 15000$ for a sandbox escape vulnerability in the Chrome web
browser.2

Often, BI is the software developer or owner, e.g., Google in the example above. However,
a bounty can be also issued for third-party software. This is the case for FOSS components

1 https://www.forbes.com/sites/taylorarmerding/2019/01/09/the-future-of-open-source-
software-more-of-everything/

2 https://www.google.com/about/appsecurity/chrome-rewards

© Andrea Canidio, Gabriele Costa, and Letterio Galletta;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 6; pp. 6:1–6:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8482-8782
mailto:andrea.canidio@imtlucca.it
https://orcid.org/0000-0002-9385-3998
mailto:gabriele.costa@imtlucca.it
https://orcid.org/0000-0003-0351-9169
mailto:letterio.galletta@imtlucca.it
https://doi.org/10.4230/OASIcs.Tokenomics.2020.6
https://www.forbes.com/sites/taylorarmerding/2019/01/09/the-future-of-open-source-software-more-of-everything/
https://www.forbes.com/sites/taylorarmerding/2019/01/09/the-future-of-open-source-software-more-of-everything/
https://www.google.com/about/appsecurity/chrome-rewards
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 VeriOSS: Using the Blockchain to Foster Bug Bounty Programs

involved in some critical systems, either open or proprietary. A prominent example of
bounties for third-parties software is the Free and Open Source Software Audit (FOSSA)
project, sponsored by the European Commission and offering bounties of up to several
hundreds of thousands of euros for vulnerabilities discovered in 14 major FOSS.3 According
to the project executives, FOSSA is a response to Heartbleed, a severe security vulnerability
that affected OpenSSL in 2014.4

Bug bounty programs are subject to numerous challenges. The main one is BI’s lack of
commitment with respect to the eligibility of bugs. Usually, a BH is expected to disclose all
details of a bug to the BI who decides on the severity of the bug and therefore how much to
pay. Clearly, the BI has strong incentives to “downgrade” the bug or declare it not eligible
for the bounty. In this way, the BI depresses the payment to the BH who, at that point, has
no more bargaining power. For example, in 2016 the majority of the security report received
by Google were considered invalid.5 This makes the bounty market inefficient and pushes
BHs to look for other opportunities, such as gray and black markets.6

As a partial answer to this problem, mediation platforms have been created, in an effort
to obtain better terms for the BHs. For instance, HackerOne7 and Integriti8 support ethical
hackers in submitting their reports and collecting rewards. A second answer is to transform
a bug into an exploit, that is an attack leveraging it. This increases the bargaining power of
the BH toward the BI, and in fact some platforms exclusively focus on exploits.9

In this position paper, we present the design and the underlying ideas of VeriOSS, a
blockchain-based platform for bug bounties. Our goal is to increase the reward for BH, so to
foster more bug hunting and, consequently, decrease the appeal of grey and black markets.
To do that, VeriOSS drives both BI and BH though a bug disclosure protocol. The protocol
starts from the BI issuing a bug reward contract where a precise characterization of the
eligible bugs is provided together with the offered reward. When a BH claims the bounty,
she must provide enough information for the BI to check the eligibility without revealing
the details for reproducing the bug. If the BI accepts the transaction, a remote debugging
protocol is executed between the BI and the BH. At each step, BI computes a challenge that
BH can only solve by continuing the debug process and revealing part of the execution trace
reproducing the bug. In exchange, BI provides a commitment to pay a fraction of the total
reward through a smart contract. Eventually, BI and BH either complete the protocol or
interrupt it. In both cases, since BH and BI negotiate the partial rewards at each step, the
protocol ensures a fair trade between the revealed information and the reward.

The rest of the paper is organized as follows. The next section introduces some preliminary
notions. We present the design of VeriOSS and of its main components in Section 3. Section 4
discusses the economic incentives that drive the protocol execution. We discuss the threat
model, some limitations and future extensions in Section 5. Finally, Section 6 compares our
proposal with the literature, and Section 7 draws some conclusions.

3 https://juliareda.eu/fossa
4 http://heartbleed.com
5 https://sites.google.com/site/bughunteruniversity/behind-the-scenes/charts/2016
6 The activities occurring on gray and black markets are hard to document. However, Hacking Team’s

recently hacked emails provide a glimpse on the workings of these markets. See https://tsyrklevich.
net/2015/07/22/hacking-team-0day-market/.

7 https://www.hackerone.com
8 https://www.intigriti.com
9 For instance, Zerodium https://zerodium.com that offers up to 2,000,000$ for a zero-day exploit.

https://juliareda.eu/fossa
http://heartbleed.com
https://sites.google.com/site/bughunteruniversity/behind-the-scenes/charts/2016
https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/
https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/
https://www.hackerone.com
https://www.intigriti.com
https://zerodium.com

A. Canidio, G. Costa, and L. Galletta 6:3

2 Preliminary notions

2.1 Program semantics
A program s is a finite sequence of statements c1, . . . , ck. Statements can be of various types,
e.g., assignments of values to variables or conditional branches. A computation is carried
out through atomic steps. Each step has the effect of modifying the program state σ and
to update the sequence of statements to be run. As usual in program semantics, the state
is a finite mapping from variables (in the scope of the current statement) to values [18].
Thus, a program configuration is a pair 〈σ, s〉. A step is 〈σ, s〉 → 〈σ′, s′〉 to denote that
in the state σ the program s executes one of its statements, becomes s′ and modifies the
state in σ′. For brevity, we write 〈σ, s〉 →∗ 〈σ′, s′〉 as a shorthand for a finite sequence of
steps 〈σ, s〉 → . . .→ 〈σ′, s′〉. Moreover, when a computation terminates, i.e., the destination
configuration contains an empty sequence of statements, we simply write the final state
as 〈σ, s〉 →∗ σ′. We refer to [18] for a general presentation on the formal semantics of
programming languages.

2.2 Hoare logics
The goal of program verification is to prove that a program s complies with a given spec-
ification. The specification is often defined in terms of preconditions and postconditions.
Intuitively, a precondition is a property P that is assumed to hold in the initial state (from
which the computation of s starts) and a postcondition is a property Q that must be guar-
anteed to hold in the final state (assume-guarantee reasoning). In symbols, the problem is
encoded as an Hoare triple {P}s{Q}. The triple is valid if ∀σ, σ′. P (σ)∧〈σ, s〉 →∗ σ′ ⇒ Q(σ′).
The proof system used for reasoning about the validity of Hoare triples is called Hoare logics.
We write |= {P}s{Q} when there exist a proof of validity.

3 VeriOSS

In this section we introduce the main components of VeriOSS and how they interact. Briefly,
VeriOSS has two goals: (i) support the honest BH in collecting a reward under the assumption
of an untrusted BI; and (ii) protect BI against untrusted BHs claiming an undeserved reward.
In particular, VeriOSS achieves these two goals by (i) requiring BI to provide a precise
description of the eligible bugs; and (ii) driving the BH disclosure and rewarding process.

3.1 Workflow overview
The general workflow of VeriOSS is depicted in Figure 1. Initially, BI publishes a bounty on
the blockchain. The bounty contains information about the type of bugs BI is interested in
and the reward. When BH detects a bug that complies with the issued bounty, she can claim
the reward. To do so, BH sends the initial debug information, e.g., the instruction where the
bug was detected. This initial disclosure should allow BI to check the eligibility of the bug.
If BI agree to continue, a disclosure loop starts. At each iteration, BI synthesizes a challenge
for BH to test her knowledge of the bug trace at a specific step. If BH solves the challenge,
she receives a partial reward (expressed as a fraction of the total one) and she provides
information to continue the disclosure loop. Eventually, the protocol terminates when either
the bug is entirely disclosed (proof completed) or one of the participants withdraws.

Below we discuss the components of VeriOSS and their requirements.

Tokenomics 2020

6:4 VeriOSS: Using the Blockchain to Foster Bug Bounty Programs

Figure 1 BPMN representation of the workflow.

float foo(unsigned char c) {
int a = c+1; //@ assert a != 0;
float z = 255/a; //@ assert z != 0;
return 1.0/z;

}

Figure 2 A fragment of C code potentially dividing by zero.

3.2 Bug specification
When publishing a bounty, BI has to provide a rigorous description of the bugs that are
eligible for the reward. Such a description contractualizes the commitment of BI to pay for
a compatible bug. Some classification techniques exist to define bugs and vulnerabilities.
For instance, the Common Vulnerability Scoring System10 (CVSS) aims at describing a
vulnerability and measuring its criticality. Also the Common Weaknesses Enumeration11
(CWE) specification language is used to identify different vulnerability types. Since these
approaches focus on describing the severity of vulnerabilities and exploits, they are not
suitable for bug bounty programs. In fact, often the BI aims at disclosing bugs even without
knowing their possible impact and severity. Moreover, since they have no formal semantics,
they can hardly support an automatic validation process.

A more promising direction is to consider specification languages for contract-driven
development [14]. These languages are used to define the properties of a piece of code in terms
of preconditions (what must be true before the execution) and postconditions (what must be
true after the execution). Moreover, they are usually provided with a formal semantics as
well as tools for the automatic reasoning. Intuitively, program specifications can be adapted
to define the conditions under which a bug shows up. The bug conditions can be expressed
as assertions that the program violates during a bugged execution. To clarify, let us consider
an example based on the ANSI C Specification Language (ACSL), used by the Frama-C
framework [12].

I Example 1. Consider the C code of Figure 2. If we are interested in spotting out divisions
by 0, there are two candidate instructions, i.e., the assignment to z and the return statement.
In terms of properties to be satisfied, the preconditions for the two statements are a 6= 0 and

10 https://www.first.org/cvss/specification-document
11 https://cwe.mitre.org/cwss/cwss_v1.0.1.html

https://www.first.org/cvss/specification-document
https://cwe.mitre.org/cwss/cwss_v1.0.1.html

A. Canidio, G. Costa, and L. Galletta 6:5

Figure 3 The P2K protocol message sequence diagram.

z 6= 0, respectively. In ASCL the corresponding assertions are placed right before the target
instructions as in Figure 2. Here, the bug is exposed (only) when c = 255. As a matter of
fact, due to the integer division 255/256, 0 is assigned to z, so violating the second assertion.

3.3 Challenge-response interaction

By definition, the bounty claim protocol is a Proof of Knowledge (PoK) protocol, also called
Σ−protocol (see [10] for further details). A PoK consists of a prover and a verifier interacting
through a challenge-response process.

However, our working conditions are slightly different. The reason is that both parties
need to prove something: BH must prove she knows the bug and BI must prove she is willing
to pay the reward. This is an instance of a two-party fair exchange protocol [15] that we call
Pay-per-Knowledge (P2K).

The main difference between a standard PoK is that the two parties play both roles, i.e.,
prover and verifier. Their individual goal is to acquire the other’s knowledge/reward. Also,
the global goal of the protocol is that the two parties only achieve their individual goals
together. Notice that “together” does not mean simultaneously. For instance, a party could
receive the other’s knowledge while providing an effective commitment to release her own
knowledge (e.g., within a certain time).

Intuitively, a way to implement P2K is to rely on a trusted third party (TTP) that
mediate and drive the interaction between the two participants. However, having a TTP is a
restrictive assumptions. Smart contracts can support the same kind of operation. Indeed,
a smart contract can carry out a certain task when a certain condition is satisfied, e.g.,
someone knows the answer to a challenge. We discuss this aspect in Section 3.6.

Figure 3 shows the P2K message flow of the bounty claim protocol. The bug disclosure is
based on a remote debugging process (see Section 3.4) replicating the execution of a buggy
program trace. The protocol starts with BH claiming the bounty by describing the bug
without disclosing it. For instance, the bug description can consist of a buggy state reached
by the program at the end of the execution trace. This initial disclosure allows the BI to
check the eligibility and severity of the bug, without being able to replicate it nor verify its
actual existence. Contextually, the BH commits the debug trace. The commitment amounts
to the hash values of the program states appearing in the trace. The trace commitment
ensures that a dishonest BH can neither craft a trace not diverge from the nominal protocol
execution (see Section 3.3).

Tokenomics 2020

6:6 VeriOSS: Using the Blockchain to Foster Bug Bounty Programs

The challenge-response loop proceeds as follows. BI stores a challenge-reward smart
contract on the blockchain. Briefly, the smart contract consists of a payment, i.e., a partial
reward, activated when a certain input is provided. The contract input is the answer to
the challenge computed by BI. In particular, the challenge is solved by a program state
from which the buggy state is reachable (in a certain number of steps). BH checks the
challenge and the amount. If she agrees with the partial reward, she submits the program
state. If this program state correctly solves the challenge, and at the same time is consistent
with the obfuscated trace, then the BH can collect the reward. Since the blockchain is
public, BI retrieves the submitted state. The loop is repeated by replacing the buggy state
with the next state provided by BH. Eventually, the loop terminates when BH provides an
initial state of the program or one of the parties retires from the protocol. We describe
the challenge generation procedure and the smart contract implementation in Sections 3.5
and 3.6, respectively.

3.4 Remote debugging
The challenge-response protocol described above implements a remote debugging process.
Remote debugging occurs when the target program runs on a different location, e.g., a remote
host. Under our assumptions, BH executes the target program12 and BI debugs it.

Remote debugging is common and many debug tools support it. However, there is a
crucial difference with the (standard, forward) remote debugging process: our debugging
procedure proceeds backward. As a matter of fact, the debugging starts from a (buggy) final
state and proceeds toward an initial state (reverse debugging).

In principle, reverse debugging does not prevent the early disclosure of the execution
trace. In fact, in many cases the state of a program is deterministically determined by its
predecessors. Hence, BI might infer the predecessor state without interacting with BH.

I Example 2. Consider again the code of Example 1 and the final state reached when c
= 255. Such a state is σ = [z←[0, a←[256, c← [255]. Trivially, since σ(c) is defined, the
actual parameter of foo, i.e., the initial state, is exposed.

To address this issue BH only partially reveals the debug state: she only discloses the
variables that are necessary to the current statement, i.e., those occurring in the expressions
to be computed.

I Example 3. We simulate a reverse debug session starting from σ as in Example 2. The
state σ refers to the statement return 1.0/z (where only the variable z appears). Thus,
BH sends to BI the state σz = [z← [0]. In this way, BI effectively verifies that the division
by 0 occurs. Still, she cannot easily infer the values of a (that determines the value of z). As
a matter of fact, any state where a is larger than 255 is a candidate predecessor. Assuming
that each iteration correspond to a single debug step, the next state revealed by BH is
σa = [a← [256]. The debug step succeeds when BI verifies that the execution of the current
statement on state σa results in state σz.

3.5 Challenge generation
As stated above, the challenge is a boolean condition that drives a decision procedure encoded
as a smart contract. In particular, given a program state σ, the challenge must precisely

12 In principle, BH might even reply a recorded execution trace without executing the program. This is
also called Post-mortem debugging.

A. Canidio, G. Costa, and L. Galletta 6:7

characterize a state σ′ being a valid predecessor of σ in the debug procedure. Moreover, to
solve the challenge, both σ and σ′ must belong to the execution trace initially committed by
BH (see Section 3.3).

A prominent technique for this task is backward symbolic execution [16, 2]. Backward
symbolic execution is used to obtain valid preconditions for the execution of a statement
starting from its postconditions. This is typically achieved by means of a weakest precondition
calculus [3]. Briefly, given a program s and a postcondition Q, a weakest precondition is the
most general predicate P such that |= {P}s{Q}.

I Example 4. Consider again the ASCL code of Example 1. The predicate z 6= 0 is
a postcondition for the statement float z = 255/a. The weakest precondition for the
statement is a predicate P such that P ⇒ z 6= 0. Since z = 255/a this becomes P ⇒
255/a 6= 0. Moreover, due to the semantics of the integer division operator in C this is
equivalent to P ⇒ a ≤ 255. Clearly, the most general (weakest) predicate P that satisfies
the implication is a ≤ 255.

To generate a challenge, BI can follow the strategy below. First, BI converts the current
debug state to a predicate Q defined as

∧
x∈Dom(σ) x = σ(x). The predicate Q is the

precondition to the current debug statement. Also, Q is the postcondition of all the previous
statements, i.e., those to be debugged to reach the initial state of the execution. Hence,
BI selects a number n of backward steps. From the code, BI extracts all the sequences of
statements of length n that can precede the current statement. Via backward symbolic
execution on the selected statements, BI computes the weakest preconditions for Q. The
resulting predicate is the challenge for BH that she answers by providing the actual state
that satisfies the precondition.

I Example 5. Consider the debug session given in Example 3. The final state σz results
in the predicate z = 0. Assuming n = 1, the challenge for BH is a > 255 (trivially from
Example 4). Then, BH successfully answers by providing σa.

It is evident from the example above that the choice of n is critical. In general, the size
of a predicate computed through backward symbolic execution can grow exponentially with
n [8]. Intuitively, the exponential blow-up is caused by the conditional statements.

In software verification, large predicates pose serious limitations. Indeed, satisfiability
modulo theories (SMT) [6] is used to verify whether a certain predicate admits a model, i.e.,
an assignment of values that satisfy the predicate. The SMT problem is computationally
hard, but its complexity varies with the underlying theory. In our context, bit-vectors are
the most common theory. The SMT problem for bit-vectors is known to be (in the best case)
NP-complete [13]. Nevertheless, this is not a limitation in our context as BH already knows
a solution to the challenge, that is the program state that she has committed.

3.6 Smart contracts and blockchain
In this section we describe the structure of the smart contracts used by VeriOSS. There

are two smart contracts, i.e., the bounty issuing contract and the partial reward contract.
The first one is straightforward. Its role is to describe the bug and the offered reward. The
second contract requires more attention. As a matter of fact, it is responsible for the partial
rewarding defined in Section 3.3.

Figure 4 shows an example Solidity [5] contract for the challenge of Example 5, i.e.,
a > 255. The contract handles three pieces of information (lines 2-4), i.e., the address of the
bounty hunter, the amount of the reward and an expiration time. The main function of the

Tokenomics 2020

6:8 VeriOSS: Using the Blockchain to Foster Bug Bounty Programs

1 contract PartialReward {
2 address public hunter = /* ... */;
3 uint public reward = /* ... */;
4 uint public expire = /* ... */;
5
6 function challenge (bytes4 [] state) public {
7 if(decommit (state) && solve(state))
8 hunter . transfer (reward);
9 }

10 function solve(bytes4 [] state) private returns (bool) {
11 if(state [0] <= 255) /* a ≤ 255 */ return false;
12 return true;
13 }
14 function decommit (bytes4 [] state) private returns (bool)
15 { /* check state hash */ }
16 function timeout () public { require (now >= expire);
17 selfdestruct (this); }
18 }

Figure 4 An instance of the partial reward smart contract.

contract is challenge (line 6). The hunter invokes the function by providing the program
state as a list of bytes. Then, the contract invokes two functions, i.e., decommit and solve
(line 7). The former (line 14) decommits the input state (i.e., it checks its hash code against
the list initially provided by the BH). The latter verifies that the provided state is a valid
solution to the challenge. If both the checks succeed, the contract transfers the reward to
the hunter. The function solve (line 10) encodes the challenge. It consists of a sequence of
conditional statements. Each statement checks whether a single clause of the challenge is
violated. In that case, solve returns false. When all the checks are passed, the function
returns true. Finally, the contract has a timeout function (line 16) to void it when the
deadline expires.

Few aspects of the contract of Figure 4 need a further discussion. In the first place,
the structure of function solve. Clearly, it is the most expensive function in terms of
computation and, since on chain computation is not for free [19], efficiency might be an issue.
As highlighted in Section 3.3, checking the solution to a challenge is linear in the number
of constraints. However, this number grows exponentially with n. Thus, a proper trade-off
must be considered.

4 Incentives

From the economic viewpoint, VeriOSS aims at allowing a profitable trading between a seller
(BH) and a buyer (BI) of information (the bug). The protocol of Section 3 can accomplish
this goal, but BH and BI may refuse to run it. The main reason is hold-up [1], i.e., the
buyer can refuse to pay after she leaned the information. This could prevent potentially
profitable exchanges due to stall between the seller (who wants to be paid before disclosing
the information) and the buyer (who wants to evaluate the information before paying it).

VeriOSS overcomes this issue by delegating the verification of the information and the
payment of the reward to a smart contract. By itself, however, this is not sufficient to give
BI and BH the correct economic incentives to follow the protocol of Section 3. Below we list
the incentives problem faced by BI and BH at every step of the protocol, and how VeriOSS
addresses them.

A. Canidio, G. Costa, and L. Galletta 6:9

1. Since BI puts forward the reward when publishing the initial bounty contract, the reward
offered by BI might be inadequate for BH. However, we expect a round of communication
between BI and BH to occur beforehand to ensure that BI and BH agree on the reward.
Also, due to the guarantees of the P2K protocol, BI and BH can negotiate under the
assumption that the counterpart is honest.

2. The cost of the off-chain computation of BI is not negligible. In particular, computing
the weakest preconditions may be computationally hard. For this reason, it is crucial
that the information initially disclosed by BH provides a proper incentive to set up the
challenges. For instance, BH might need to initially reveal some extra details about the
debug trace. What is the right amount of information is an open research question, e.g.,
see [11].

3. A malicious BI could intentionally craft an incorrect challenge. The main motivation
here is inferring as much information as possible from BH’s answer. For example, BI
might submit an unsatisfiable challenge to make the protocol fail even if the provided
answer is correct. In this way, BI may collect the next state without paying the partial
reward. However, BH can also compute the weakest preconditions and detect an incorrect
challenge. In such a case, she can retire from the protocol with no loss.

4. Even if BH has always answered correctly, BI could decide to interrupt the protocol before
the end. For instance, BI may believe that the information still to be released by BH is
worth than the remaining reward. This boils down to correctly establishing the partial
rewards, so to adequately compensate BH while encouraging BI to continue. As long as
they correctly price each iteration, BI is not motivated to interrupt the protocol.13

5. BH may attempt to renegotiate the reward after BI computes a challenge, i.e., BH can
hold up BI. Indeed, since it is costly, BI may accept to pay an higher partial reward to
avoid recomputing the challenge. Note, however, that the total reward is established at
the beginning of the protocol. Hence, an honest BH would no obtain an higher total
payment. Since it reveals that BH is malicious, no BH (malicious or honest) is motivated
to renegotiate.

Finally, note that the above analysis assumes the presence of a single BH and a single BI.
This is not the case in general. The presence of other BIs and BHs may affect the incentives
faced by the protocol’s participants, and hence the performance of the protocol. We discuss
this issue in the next section.

5 Discussion

In this section we provide a detailed discussion on some aspects that may affect the imple-
mentation of VeriOSS, some open issues and future developments.

5.1 Implementation details
The implementation will need to address issues about some aspects we left abstract in the
previous sections. A first issue concerns how to represent the commitment trace of BH.
Intuitively, this trace can be obtained by computing the hashes of each state in the original
debug trace. However, this may be impractical because of the length of the debug trace.
Thus, we need an implementation that compresses these traces without compromising the
validity of the protocol.

13This issue can also be more directly addressed by using an escrow (see Section 5.2).

Tokenomics 2020

6:10 VeriOSS: Using the Blockchain to Foster Bug Bounty Programs

Another issue is about the number n of iterations of the challenge-response protocol.
This choice is quite critical: different choices of n may lead to different cost in term of
(i) cryptocurrency paid by the parties and (ii) efficiency of the protocol. Finding a good
trade-off is left as future work.

5.2 Threat model
The design of VeriOSS is based on a threat model where both BI and BH do not trust
each other and both may be malicious. On the one hand, a malicious BI aims at collecting
information about a bug without paying the corresponding reward. Our protocol opposes
this behavior and forces BI to behave honestly by (i) requiring a precise specification of the
eligible bugs (Section 3), (ii) increasing the bargaining power of the BH, (iii) providing the
partial reward mechanism in which a small portions of the bounty is paid in each iteration
for each piece of revealed information (Section 3.3).

On the other hand, a malicious BH aims at obtaining an undue reward. For instance, BH
might submit a partial or a false bug trace during the remote debug protocol. Also, a malicious
BH could attempt a reply attack by re-submitting an old, already paid trace. VeriOSS protects
honest BIs against malicious BHs by (i) establishing a commitment phase (Section 3.3), (ii)
providing a challenges-response protocol. In particular, the trace commitment ensures that
past traces are automatically detected, e.g., because they terminate with the very same state
of a previously executed trace. Instead, the challenge-response protocol ensures that each
step of the trace is correct.

In addition, the protocol can be easily extended by introducing a second smart contract
acting as an escrow that collects all the partial rewards and then forwards them to the BH
only if the bug is entirely disclosed. In this way, a malicious BH cannot obtain any partial
reward and, at the same time, a malicious BI cannot gain by strategically interrupting the
protocol. As future work, we plan to further study the robustness of our mechanisms against
this attacker model.

5.3 Future extension
Here, we outline some future directions for the development of VeriOSS.

The current design of VeriOSS allows a single BH and a single BI to efficiently exchange
the bug trace against a reward. However, this is just an intermediate goal, because the bug
bounty market consists of several actors. Currently, our bug disclosure process in exclusive
between one BI and one BH. Instead, “open” sessions might allow other parties to interact,
e.g., by offering a better reward.

The blockchain used by VeriOSS allows parties that do not know or trust each other to
interact. Sometimes this is not desirable, e.g., when knowing the identity of the BI necessary
to discriminate between legitimate companies and malicious actors. As a mitigating, we
could allow the BI creating the smart contract to “sign” it using its private keys, therefore
allowing everybody to verify that a given challenge was indeed created by a reputable BI.
This, of course, would not prevent malicious actors from creating their own smart contracts
using VeriOSS, but it would make public that a given (supposedly malicious) actor posted a
challenge and obtained information regarding a bug. Discriminating between legitimate and
malicious BIs is a future work.

Also, many different firms may benefit from discovering and fixing bugs in FOSS. This
gives rise to what is known as “free rider” problem. The maximum payment a BH can receive
depends on the willingness to pay for the bug report of the firm valuing it the most. Such

A. Canidio, G. Costa, and L. Galletta 6:11

a payment can be significantly lower than the overall benefit of finding the bug. VeriOSS
can include a mechanism to aggregate rewards from several BIs. For instance, this can be
achieved by introducing reward rise contracts that BIs can use to offer a further incentive
toward the disclosure of a certain bug. Again, this is future work.

Finally, the presence of other actors is also relevant for the issue of “responsible disclosure”.
In most bug bounty programs, all parties are contractually forbidden from publicly disclosing
the bug for a period of time. Such a time span may be legally imposed and it is intended to
give the BI enough time to fix the bug. In VeriOSS, instead, the bug is immediately public,
which implies that a malicious actor could exploit it before the BI manages to implement a
remediation. This is also a direction where we plan to improve the protocol.

5.4 Limitations
Here, we briefly discuss some limitations of our proposal. In the design of VeriOSS we assume
that BH has a copy of the software to test. This is not a problem for mobile apps, or desktop
software that the BH can download from the network and run on her machines. However,
when the target software is a web application or web service our remote debugging protocol
cannot be applied as is. Indeed, in those situations the BH can mainly interact with the
software by providing inputs and receiving outputs (a.k.a. black box testing). Hence, BH
does not have access to the full program state, which is partially stored on a remote server.

Another limitation is the assumption that a bounty is only issued for a bug, i.e., a faulty
state of the target program. Often, a BI only offers a reward for a bug that actually impacts
on the security of the software. Said differently, a BI might ask for an exploit exposing
her software to concrete attacks, e.g., data breaches. Thus, the offered reward depends on
the value of the assets that an attacker can steal or compromise. At the moment VeriOSS
does not support this kind of bounty programs. Furthermore, although formal specification
languages can precisely characterize a failure condition, one could argue that some types
of bugs cannot be expressed (easily or even at all). For instance, think about the remote
code execution caused by a ROP chain [17]. For these reasons, we plan to introduce multiple
languages for the specification of bugs and exploits. The main requirement for the bug
definition languages is that they must provide a sound eligibility check (so that BI cannot
repudiate an eligible bug) and support the challenge-response process.

6 Related work

VeriOSS is made of different components each based on a specific technology. Here, we follow
the line of Section 3 and compare each component of VeriOSS with similar proposals.

6.1 Remote attestation
Remote attestation [4] allows a remote host (the challenger) to authenticate the hardware and
software configuration of another remote host (the attestator) which is charge of performing
some computation. The attestator is equipped with a suitable Trusted Platform Module
(TPM) chip, which she uses to attest the states of its software components to the challenger.
Typically, this verification is based on digital signatures, i.e., the challenger only verifies that
the signatures sent by the attestator are as expected. This basic attestation mechanism can
be used as a building block to check other security properties. For example, [9] proposes the
implementation of a trusted virtual machine that not only allows running a program but
also attesting to a remote entity that the running program satisfies a given set of security
properties at run time.

Tokenomics 2020

6:12 VeriOSS: Using the Blockchain to Foster Bug Bounty Programs

At a first sight, one may think that the challenge-response interaction protocol of
Section 3.3 may be implemented using remote attestation. However, this is not the case
because mainly remote attestation only allows BI to avoid a malicious BH, but not vice versa.
Furthermore, remote attestation requires that BH is equipped with a specific hardware, i.e.,
TPM chip, that increase the cost of entering the market. Our protocol, instead, provides a
mechanism to protect both participants and does not require any specific hardware.

6.2 Remote debugging
Modern development environment allows debugging applications remotely. This is very useful
when the development system is different than the production one. The underlying idea
is that the debugger is installed on the production server and that it provides a network
channel for interacting with the debbuged program. The programmer uses a client that
completely abstract the interactions through the network. In this way, debugging a program
remotely is almost the same as doing it locally. In particular, this means that the client can
stepwise run the program and can inspect its memory.

There are at least two crucial differences between a standard remote debugging and the
approach described in Section 3.4. The first is that in standard remote debugging there is
only an agent interacting with the program that is the client (the server only makes available
the state of the program to the client); then, the client and the server trust each other, or
both are under the same administrative domain. Whereas in our setting, BI and BH are two
different agents in the system that does not trust each other.

The second important difference is that the standard remote debugging proceeds forwards
and the client can access the entire state of the execution. In our approach, instead, the
debugging proceeds backward and the BI can access only a specific part of the state of the
execution.

6.3 Information flow
Information flow control (IFC) is a mandatory access control mechanism that enforces some
restrictions on a piece of data and on all data derived from it. It was introduced in [7] as
mechanism to enforce non-interference across security levels. IFC is continuously enforced
at every information exchange. The underlying idea is that each piece of information is
associated with a policy (tags working as metadata) describing its level of secrecy and
integrity. Moreover, also entities of a system are associated with a security level, describing
the sensitivity of the data they are allowed to handle. The mechanism guarantees that
entities with a lower security clearance cannot read/write up to information with higher
security level. Symmetrically, it also ensures that entities with higher security clearance
cannot write down by making a disclosure of information.

During our remote debugging process the BH should not reveal too much information
about the execution state, so that a malicious BI cannot reconstruct all the execution state.
To do that, our protocol prescribes that BH shares only a part of the state. To determine
which part of the state to be disclosed, the BH should follows an approach based on IFC.

6.4 Secure multi-party computation
A multi-party computation occurs when two or more entities join together to compute a
certain function f . More precisely, consider n parties P1, . . . , Pn, each with its own input xi,
which want to compute f(x1, . . . , xn). A secure multi-party computation [10] is a multi-party
computation where each participant Pi aims to preserve the privacy of its input xi.

A. Canidio, G. Costa, and L. Galletta 6:13

Our challenge-response protocol fits this setting where the function f to compute consists
in the challenge verification process. Indeed, the BI provides as input a pair q made of the
challenge and of the commitment contract; whereas the BH provides the corresponding state
σ. The function f then perform the relevant checks and return a pair q′ containing the
reward for BH and the computation state for the BI. However, differently from the case of
the secure multi-party computation, the input of BH is private, whereas the one of BI is
public (and indeed published on a blockchain).

6.5 Information sharing

The inefficiencies of bug bounty programs are commont to all markets for information and
have been known at least since [1]. Several authors have studied mechanisms to resolve these
inefficiencies. The most closely related work is [11], which proposes a protocol in which the
seller of information sustains several tests. Every time a test is successfully completed, the
buyer sends the seller a partial payment. In their baseline model, the tests are such that if
the seller really has the piece of information, then she passes the test. If she does not, then
she can complete the test with probability p < 1, where lower values of p correspond to more
stringent (and hence more informative) tests. In the first round of the protocol, the seller
reveals some information by sustaining a test for free. After observing the result of the test,
the buyer updates his belief regarding whether the seller has the piece of information, and
with it the expected benefit of learning it. The buyer then sends a payment to the seller who
sustains another test, and so on. The information is thus revealed in stage (by sustaining
each test) and to each revelation stage corresponds a partial payment.

Crucially, [11] assumes a total lack of commitment: the buyer is free to withhold the
payment to the seller, even after the seller passes the test. In the equilibrium with information
revelation the prospect of learning additional information motivates the buyer to follow the
protocol. But many other equilibria exist, including some in which no information is ever
revealed.

The part of VeriOSS that is most closely related to [11] is the initial exchange of
information, in which the BH reveals the initial state. The reason is that, at this stage, the
BI is under no obligation to set up the smart contract and start the protocol. This lack of
commitment implies that the intuition in [11] applies here as well. However, once the smart
contract is set up and the iteration of challenge/response begins, [11] ceases to be relevant.
The reason is that the BI can commit to pay the BH if and only if the BH has the correct
piece of information. The fact that information is revealed in stages (with corresponding
partial payments) is done exclusively for practical reasons. As already discussed, the protocol
could run with a single test and a single answer revealing the entire trace, but crafting such
test is computationally very expensive. For this reason the information generation protocol
is split in different stages.

7 Conclusion

In this paper we presented VeriOSS, a novel paradigm for the construction of bug bounty
programs. VeriOSS-based programs provide concrete guarantees that a bounty hunter
will receive her rewards without trusting the bounty issuer. Together with other relevant
properties natively supported by the blockchain, we expect this to favor the flourishing of
the bug bounty market.

Tokenomics 2020

6:14 VeriOSS: Using the Blockchain to Foster Bug Bounty Programs

References
1 Kenneth Joseph Arrow. Economic welfare and the allocation of resources for invention. In

Readings in industrial economics, pages 219–236. Springer, 1972.
2 Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi.

A survey of symbolic execution techniques. ACM Comput. Surv., 51(3):50:1–50:39, May 2018.
3 Marcello M. Bonsangue and Joost N. Kok. The weakest precondition calculus: Recursion and

duality. Form. Asp. Comput., 6(1):788–800, November 1994.
4 George Coker, Joshua D. Guttman, Peter Loscocco, Amy L. Herzog, Jonathan K. Millen, Brian

O’Hanlon, John D. Ramsdell, Ariel Segall, Justin Sheehy, and Brian T. Sniffen. Principles of
remote attestation. Int. J. Inf. Sec., 10(2):63–81, 2011.

5 Chris Dannen. Introducing Ethereum and Solidity. Apress, Berkely, CA, USA, 1st edition,
2017.

6 Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction and
applications. Commun. ACM, 54(9):69–77, September 2011.

7 Dorothy E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236–243,
May 1976.

8 Cormac Flanagan, Cormac Flanagan, and James B. Saxe. Avoiding exponential explosion:
Generating compact verification conditions. In Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’01, pages 193–205.
ACM, 2001.

9 Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic remote attestation: A virtual
machine directed approach to trusted computing. In Proceedings of the 3rd Conference on
Virtual Machine Research And Technology Symposium - Volume 3, VM’04, pages 3–3. USENIX
Association, 2004.

10 Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols: Techniques and
Constructions. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

11 Johannes Hörner and Andrzej Skrzypacz. Selling information. Journal of Political Economy,
124(6):1515–1562, 2016.

12 Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski.
Frama-C: A software analysis perspective. Formal Aspects of Computing, 27(3):573–609, May
2015.

13 Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. On the complexity of fixed-size
bit-vector logics with binary encoded bit-width. In Pascal Fontaine and Amit Goel, editors,
SMT 2012. 10th International Workshop on Satisfiability Modulo Theories, volume 20 of EPiC
Series in Computing, pages 44–56. EasyChair, 2013.

14 Bertrand Meyer. Contract-driven development. In Proceedings of the 10th International
Conference on Fundamental Approaches to Software Engineering, FASE’07, pages 11–11,
Berlin, Heidelberg, 2007. Springer-Verlag.

15 Aybek Mukhamedov, Steve Kremer, and Eike Ritter. Analysis of a multi-party fair exchange
protocol and formal proof of correctness in the strand space model. In Andrew S. Patrick
and Moti Yung, editors, Financial Cryptography and Data Security, pages 255–269, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

16 Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed incremental
symbolic execution. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 504–515. ACM, 2011.

17 Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented program-
ming: Systems, languages, and applications. ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34,
March 2012.

18 Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT
Press, Cambridge, MA, USA, 1993.

19 Daniel Davis Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger, 2014.
(White paper).

A Foundation for Ledger Structures
Chad Nester
Tallinn University of Technology, Estonia

Abstract
This paper introduces an approach to constructing ledger structures for cryptocurrency systems
with basic category theory. Compositional theories of resource convertibility allow us to express
the material history of virtual goods, and ownership is modelled by a free construction. Our notion
of ownership admits an intuitive graphical representation through string diagrams for monoidal
functors.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases String Diagrams, Category Theory, Blockchains

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.7

Funding Chad Nester : This research was supported by the ESF funded Estonian IT Academy
research measure (project 2014-2020.4.05.19-0001).

1 Introduction

Modern cryptocurrency systems consist of two largely orthogonal parts: A consensus protocol,
and the ledger structure it is used to maintain. While consensus protocols have received a
lot of attention (see e.g. [10, 7]), the design space of the accompanying ledger structures
is barely explored. The recent interest in smart contracts has led to the development of
sophisticated ledger structures with complex behaviour (see e.g. [1, 13]). These efforts have
been largely ad hoc, and the resulting ledger structures are difficult to reason about. This
difficulty also manifests in the larger system, which has contributed to several unfortunate
incidents involving blockchain technology [2].

A strong mathematical foundation for ledger structures would enable more rigorous
development of sophisticated blockchain systems. Further, the ability to reason about the
ledger at a high level of abstraction would facilitate analysis of system behaviour. This is
important: users of the system must understand it in order to use it with confidence. The
formalism we propose has an intuitive graphical representation, which would make this kind
of rigorous operational understanding possible on a far wider scale that it would otherwise
be.

Blockchain systems are largely concerned with recording the material history of virtual
objects, with a particular focus on changes in ownership. The resource theoretic interpretation
of string diagrams for symmetric monoidal categories gives a precise mathematical meaning
to this sort of material history. Building on this, we consider string diagrams augmented with
extra information concerning the ownership of resources. We give these diagrams a precise
mathematical meaning in terms of strong monoidal functors, drawing heavily on the work of
[9], where our augmented diagrams originated. We show that an augmented resource theory
has the same categorical structure as the original, in the sense that the two corresponding
categories are equivalent. Finally, we give a simple example of a ledger structure using our
machinery.

© Chad Nester;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 7; pp. 7:1–7:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.Tokenomics.2020.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 A Foundation for Ledger Structures

2 Monoidal Categories as Resource Theories

We assume familiarity with some basic category theory, in particular with symmetric monoidal
categories. A good reference is [8]. Throughout, we will write composition in diagrammatic
order. That is, the composite of f : X → Y and g : Y → Z is written fg : X → Z. We
may also write g ◦ f : X → Z, but we will never write gf : X → Z. We will make heavy
use of string diagrams for monoidal categories (see e.g. [11]), which we read from top to
bottom (for composition) and left to right (for the monoidal tensor). Our string diagrams
for ownership are in fact the string diagrams for monoidal functors of [9].

2.1 Resource Theories

We begin by observing (after [4]) that a symmetric strict monoidal category can be interpreted
as a theory of resource convertibility: Each object corresponds to collection of resources with
A⊗B denoting the collection composed of both A and B and the unit I denoting the empty
collection. Morphisms f : A→ B are then understood as a way to convert the resources of
A to those of B.

For example, consider the free symmetric strict monoidal category on the set

{bread, dough, water, flour, oven}

of atomic objects, subject to the following additional axioms:

mix : water⊗ flour→ dough knead : dough→ dough

bake : dough⊗ oven→ bread⊗ oven

This category can be understood as a theory of resource convertibility for baking bread.
The morphism mix represents the process of combining water and flour to form a bread
dough, knead the process of kneading the dough, and bake the process of baking the dough
in an oven to yield bread (and an oven). While this model has many failings as a theory of
bread, it suffices to illustrate the idea. The axioms of a symmetric strict monoidal category
provide a natural scaffolding for this theory to live in. For example, consider the morphism

(bake⊗ 1dough)(1bread ⊗ σoven,doughbake)

where σA,B : A⊗B ∼−→ B ⊗A is the braiding. This morphism has type

dough⊗ oven⊗ dough→ bread⊗ bread⊗ oven

and describes the transformation of two pieces of dough into two loaves of bread by baking
them one after the other in an oven. We obtain a string diagram for this morphism by drawing
our objects as wires, and our morphisms as boxes with inputs and outputs. Composition is
represented by connecting output wires to input wires, and we represent the tensor product
of two morphisms by placing them beside one another. Finally, the braiding is represented
by crossing the involved wires. For the morphism in question, we obtain:

C. Nester 7:3

We will think of our ledger systems in terms of such string diagrams: The state of the
system is a string diagram describing the material history of the resources involved, the
available resources correspond to the output wires, and changes are effected by appending
resource conversions to the bottom of the diagram. From now on we understand a resource
theory to be a symmetric strict monoidal category with an implicit resource-theoretic
interpretation.

2.2 How to Read Equality
Suppose we have a resource theory X, and two resource transformations f, g : A → B.
Each of f and g expresses a different way to transform an instance of resource A into an
instance of resource B, but these may not have the same effect. For example, consider
knead : dough → dough and 1dough : dough → dough from our resource theory of bread.
Clearly these should not have the same effect on the input dough. This is reflected in our
resource theory in the sense that they are not made equal by its axioms. For contrast, we
can imagine a (somewhat) reasonable model of baking bread in which there is no difference
between kneading the dough once and kneading it many times. We could capture this in our
resource theory of baking bread by imposing the equation

knead = knead ◦ knead

In this new resource theory, our equation tells us that kneading dough once has the same
effect as kneading it twice, or three times, and so on, since the corresponding morphisms of
the resource theory are made equal by its axioms. Of course, the material history described
by knead◦knead is not identical to that described by knead. In the former case, the kneading
process has been carried out twice in sequence, while in the latter case it has only been
carried out once. That these morphisms are equal merely means that the effect of each
sequence of events on the dough involved is the same.

We adopt the following general principle in our design and understanding of resource
theories: Two transformations should be equal precisely when they have the same effect on
the resources involved.

We further illustrate this by observing that, by the axioms of a symmetric monoidal
category (specifically, by naturality of braiding), the following two transformations in the
resource theory of baking (expressed as string diagrams) are equal. The transformation
on the left describes baking two loaves of bread by first mixing and kneading two batches
of dough before baking them in sequence, while the transformation on the right describes
baking two loaves of bread by mixing, kneading, and baking the first batch of dough, and
then mixing, kneading, and baking the second batch. Thus, according to our resource theory
the two procedures will yield the same result – not an entirely unreasonable conclusion!

Tokenomics 2020

7:4 A Foundation for Ledger Structures

3 String Diagrams for Ownership

Ledgers used by blockchain systems are largely concerned with ownership. For example, in
the Bitcoin system, each coin is associated with a computable function called the validator,
which is used to control access to it. Anyone who wishes to use the coin must supply input
data, called a redeemer, and the system only allows them to use the coin in question in case
running the validator on the redeemer terminates in a fixed amount of time. If the validator
is defined only on the data that results from Alice digitally signing a nonce generated by
the system, then that coin can only be used by Alice, who then effectively owns it.

Different use cases call for different authentication schemes. For example, a proposed
application of blockchain technology is to improve supply chain accountability by requiring
participants to log any transfers and transformations of material on a public ledger (see e.g.
[5, 12]). Here ownership implies responsibility, and so for Alice to log the transfer of, say, a
ton of steel to Bob, both Alice and Bob must ratify the transfer via digital signature.

What different use cases have in common is that the resources of the ledger system are
associated with ownership data. We leave the interpretation of this ownership data, including
the specific details of the authentication scheme unspecified, instead giving a structural
account of resource ownership. We develop our account of resource ownership intuitively,
and somewhat informally, by introducing addtional features to string diagrams. This is made
fully formal in the next section.

3.1 Ownership and Collection Management
Begin by assuming a theory of resources X, and a collection C of potential resource owners,
each of which we associate with a colour for use in our diagrams. Suppose for the remainder
that Alice, Bob, and Carol range over C, and are associated with colours as follows:

C. Nester 7:5

Our goal will be to construct a new theory of resources in which resources and
transformations are associated with (owned and carried out by) elements of C. The objects
of our new resource theory will be collections of owned objects of X. That is, for each object
X of X and each Alice ∈ C we have an object XAlice, which we interpret as an instance of
resource X owned by Alice, along with the empty collection I and composite collections
XAlice ⊗ Y Bob, in which Alice’s instance of X exists alongside an instance of Y owned by
Bob.

Similarly, for each transformation f : X → Y in X, we ask for transformations fAlice :
XAlice → Y Alice and fBob : XBob → Y Bob for all Alice, Bob ∈ C, whose presence we interpret
as the ability of each owner to effect all possible transformations of resources they own. We
draw these annotated transformations as, respectively:

Since we are building a theory of resources we must end up with a symmetric monoidal
category, so we also assume the presence of the associated morphisms, such as fAlice ⊗ gBob

and σXAlice,Y Bob .
Next, we account for the formal difference between XAlice ⊗ Y Alice and (X ⊗ Y)Alice.

In both situations Alice owns an X and a Y , but in the former they are formally grouped
together, while in the latter they are formally separated. We understand this formal grouping
of Alice’s assets by analogy with physical currency. The situation in which Alice’s assets
are separated is like Alice having two coins worth one euro, while the situation in which they
are grouped together is like Alice having one coin worth two euros. In both cases, Alice
posesses two euros, but the difference is important: Alice cannot give Bob half of the two euro
coin, but can easily give Bob one of the two one euro coins. This distinction is also present
in cryptocurrency systems, where there is an operational difference between having funds
spread across many addresses and having them collected at one address. Reflecting both the
reality of such systems and the principle that one ought to be able to freely reconfigure the
formal grouping of things that they own, we ask that for each X,Y objects of X and each
Alice ∈ C our new resource theory has morphisms φX,Y : XAlice ⊗ Y Alice → (X ⊗ Y)Alice

and ψX,Y : (X ⊗ Y)Alice → XAlice ⊗ Y Alice. We draw these morphisms, respectively, as
follows:

These changes of formal grouping should not interact with the resource transformations
of our original theory X, since it ought not matter whether Alice combines (splits) her
resources before or after transforming them. That is, we we require:
[G.1] φAlice

X,Y (f ⊗ g)Alice = (fAlice ⊗ gAlice)φAlice
X′,Y ′

[G.2] (f ⊗ g)AliceψAlice
X′,Y ′ = ψAlice

X,Y (fAlice ⊗ gAlice)

Tokenomics 2020

7:6 A Foundation for Ledger Structures

As it stands, there are many non-equal ways for Alice to reconfigure the formal grouping
of their assets. Since these should all have the same effect, we need them all to be equal as
morphisms in our resource theory. It suffices to ask that the φAlice and ψAlice maps give,
respectively, associative and coassociative operations, and that they are mutually inverse.
That is (associativity and coassociativity):
[G.3] (φAlice

X,Y ⊗ 1Alice
Z)φAlice

X⊗Y,Z = (1Alice
X ⊗ φAlice

Y,Z)φAlice
X,Y⊗Z

[G.4] ψAlice
X⊗Y,Z(ψAlice

X,Y ⊗ 1Alice
Z) = ψAlice

X,Y⊗Z(1Alice
X ⊗ ψAlice

Y,Z)

and (mutually inverse):
[G.5] ψAlice

X,Y φAlice
X,Y = 1Alice

X⊗Y

[G.6] φAlice
X,Y ψAlice

X,Y = 1Alice
X ⊗ 1Alice

Y

To complete our treatment of these formal resource groupings, we must deal with the
empty case IAlice. We insist that Alice may freely create and destroy such empty collections
via morphisms φAlice

I : I → IAlice and ψAlice
I : IAlice → I:

subject to the following axioms, which state that adding or removing nothing from a group
or resources has the same effect as doing nothing, and that φI and ψI are mutually inverse,
which together ensure that even with φI and ψI in the mix, any two formal regroupings with
the same domain and codomain are equal.
[G.7] (φAlice

I ⊗ 1Alice
X)φAlice

I,X = 1Alice
X = (1Alice

X ⊗ φAlice
I)φAlice

X,I

[G.8] ψAlice
I,X (ψAlice

I ⊗ 1Alice
X) = 1Alice

X = ψAlice
X,I (1Alice

X ⊗ ψAlice
I)

[G.9] φAlice
I ψAlice

I = 1I
[G.10] ψAlice

I φAlice
I = 1Alice

I

C. Nester 7:7

Finally, we ask that φ and ψ behave coherently with respect to the symmetry maps. It
suffices to require that
[G.11] φAlice

X,Y σAlice
X,Y = σXAlice,Y AliceφAlice

Y,X

3.2 Change of Ownership
Of course, ownership is not static over time. We require the ability the change the owner of
a given collection of resources. To this end we add morphisms γAlice,Bob

X : XAlice → XBob to
our new resource theory for each object X of X, each Alice, Bob ∈ C. We depict these new
morphisms in our string diagrams as follows:

As with regrouping, change of ownership should not interact with resource transformations,
in the sense that:
[O.1] fAliceγAlice,Bob

Y = γAlice,Bob
X fBob

Further, change of ownership must behave coherently with respect to the regrouping
morphisms in the sense that:
[O.2] φAlice

X,Y γAlice,Bob
X⊗Y = (γAlice,Bob

X ⊗ γAlice,Bob
Y)φBob

X,Y

[O.3] γAlice,Bob
X⊗Y ψBob

X,Y = ψAlice
X,Y (γAlice,Bob

X ⊗ γAlice,Bob
Y)

Tokenomics 2020

7:8 A Foundation for Ledger Structures

For completeness, we axiomatize the interaction of change of ownership with empty
collections by requiring that:
[O.4] φAlice

I γAlice,Bob
I = φBob

I

[O.5] γAlice,Bob
I ψBob

I = ψAlice
I

Finally, we insist that if Alice gives something to Bob, and Bob then gives it to Carol,
this has the same effect as Alice giving the thing directly to Carol. Similarly, if Alice gives
something to Alice, we insist that this has no effect.
[O.6] γAlice,Bob

X γBob,Carol
X = γAlice,Carol

X

[O.7] γAlice,Alice
X = 1Alice

X

We end up with a rather expressive diagrammatic language. For example, if we begin
with the resource theory of bread, then our new resource theory is powerful enough to show:

which captures the fact that the sequence of events on the left in which Carol gives Alice
and Bob each a portion of dough to bake in their ovens, after which they give the resulting
bread to Carol has the same effect as the sequence of events on the right in which Alice
and Bob give their ovens to Carol, who bakes the portions of dough herself before returning
the ovens to their original owners. Notice that our diagrammatic representation of this is
much easier to understand than the corresponding terms in linear syntax!

C. Nester 7:9

4 Categorical Semantics

In this section we show how our augmented string diagrams can be given precise mathematical
meaning. Specifically, from a resource theory and a set whose elements we think of as entities
capable of owning resources, we construct a new resource theory in which all resources are
owned by some entity. We finish by showing how to model a simple cyrptocurrency ledger
with our machinery.

4.1 Interpreting String Diagrams with Ownership
If X is a theory of resources and C is our set, we treat C as the corresponding discrete category,
writing A : A → A for the identity maps, and form the product category X × C. Write
objects and maps of this product category as XA = (X,A) and fA = (f,A) respectively.
Now, define C(X) to be the free strict symmetric monoidal category on X× C subject to the
following additional axioms:

A ∈ C X,Y objects of X
φAX,Y : XA ⊗ Y A → (X ⊗ Y)A in C(X)

A ∈ C
φAI : I → IA in C(X)

A ∈ C X,Y objects of X
ψAX,Y : (X ⊗ Y)A → XA ⊗ Y A in C(X)

A ∈ C
ψAI : IA → I in C(X)

A,B ∈ C X an object of X
γA,BX : XA → XB in C(X)

and subject to equations [G.1–11] and [O.1–7] for Alice, Bob, Carol ∈ C, X,Y, Z objects
of X, and f, g morphisms of X.

Clearly, C(X) is the new resource theory our coloured string diagrams live in. We think
of objects XA and morphisms fA as being owned and carried out, respectively, by A ∈ C.
The free monoidal structue gives us the ability to compose such transformations sequentially
and in parallel, and the additional axioms ensure our ownership interpretation of C(X) is
reasonable.

We can characterize the category-theoretic effect of axioms [G.1–11] and [O.1–5] as
follows:

I Proposition 1. For any symmetric monoidal category X and any set C, there is a strong
symmetric monoidal functor

A : X→ C(X)

for each A ∈ C. Further, there is a monoidal and comonoidal natural transformation

γA,B : A→ B

between the functors corresponding to any two A,B ∈ C.

Proof. Define A : X→ C(X) by A(X) = (X,A) on objects, and A(f) = (f,A) on maps. For
identity maps, A(1X) = (1X , A) = 1(X,A) = 1A(X) since (1X , A) is the identity on (X,A)
in X × C. For composition, A(fg) = (fg,A) = (f,A)(g,A) = A(f)A(g).Thus A defines a
functor. A is strong symmetric monoidal via the φA and ψA maps together with [G.1]
through [G.11]. Consider A,B : X→ C(X) corresponding to A,B ∈ C. Define γA,B : A→ B

to have components γA,BX . Then γA,B is a monoidal and comonoidal via [O.1] through
[O.5]. J

Tokenomics 2020

7:10 A Foundation for Ledger Structures

Notice that we did not use [O.6–7] above. These axioms are motivated by our desire to
model resource ownership, but they have an important, if subtle, effect on the theory: they
allow us to show that X and C(X) are equivalent as categories. This means that any suitably
categorical structure is present in X if and only if it is present in C(X) as well. For example,
products in X manifest as products in C(X), morphisms that are monic in X remain monic
in C(X), and so on. We may be confident that our addition of ownership information has not
broken any of the structure of X, or added anything superfluous!

I Proposition 2. There is an adjoint equivalence between X and C(X) for each functor
corresponding to some A ∈ C.

Proof. We show that each A : X→ C(X) is fully faithful, and essentially surjective, beginning
with the latter. To that end, suppose that P is an object of C(X). We proceed by structural
induction: If P is I, then φ0 witnesses I ' A(I). If P is an atom (X,A), then (X,A) = A(X).
If P is Q⊗R for some Q,R, then by induction we have that Q ' A(X1) and R ' A(X2) for
some objects X1, X2 of X. We may now form

Q⊗R ' A(X1)⊗A(X2)
φA

X1,X2// A(X1 ⊗X2)

which witnesses P ' A(X1 ⊗ X2). Thus, A is essentially surjective. To see that A is
fully faithful, let U : C(X) → X be the obvious forgetful functor. The required bijection
X(X,Y) ' C(X)(A(X), A(Y)) is given by A in one direction and U in the other. It sufffices
to show that any morphism h : A(X)→ A(Y) with U(h) = f is such that h = A(f). Notice
that since each γA,B is a monoidal and comonoidal natural transformation, there is a term
equal to h in which all γ morphisms occur before all other morphisms (in the sense that
f occurs before g in fg). Since h : A(X) → A(Y) we know that in this equal term the
composite of the γ must have type A(X) → A(X), and must therefore be the identity by
repeated application of [O.6] and [O.7]. This gives a term h′ containing no γ maps with
h′ = h. Similarly, since the various φ and ψ morphisms are natural transformations, we
may construct a term h′′ by collecting all instances of φ and ψ terms at the beginning of h′.
Once collected there, the composite of all the φ and ψ must have type A(X)→ A(X), and
is therefore equal to the identity. At this point we know that h′′ : A(X)→ A(Y) is such that
h′′ = A(f1) · · ·A(fn) for some f1, . . . , fn in X. By assumption f = U(h) = U(h′′) = f1 · · · fn,
and therefore h′′ = A(f). J

4.2 A Simple Example
In this section we attempt to demonstrate the relevance of the above techniques to the
cryptocurrency world by building a resource theory that models a simple ledger structure
along the lines of Bitcoin [10]. Let 1 be the trivial category, with one object, 1, and one
morphism, the identity 11. Define N to be the free symmetric strict monoidal category on 1,
write 0 for the monoidal unit of N, and n for the n-fold tensor product of 1 with itself for all
natural numbers n ≥ 1. Notice that n + m is n ⊗m. We will think of the objects n of N
where n ≥ 1 as coins. Of course, 0 = I represents the situation in which no coin in present.

Define Nν to be the result of formally adding a morphism ν : 0 → 1 to N, write
ν0 = 10 : 0 → 0, and νn : 0 → n for the n-fold tensor product of ν with itself for n ≥ 1.
These morphisms confer the ability to create new coins, so we imagine their use would be
restricted in practice. We will not ask for the ability to destroy coins, although there would
be no theoretical obstacle to doing so.

Now, let C be a collection of colours, which we can think of as standing in for cryptographic
key pairs, or simply entities capable of owning coins. Consider C(Nν). Objects are lists
nc1

1 ⊗· · ·⊗n
ck

k , which we interpret as lists of coins, where nci
i is a coin of value ni belonging to

C. Nester 7:11

ci ∈ C. The morphisms are either νcn for some c ∈ C, the structural morphisms of a monoidal
category, or the φ, ψ, and γ morphisms added by our construction. For n,m ∈ N and
Alice, Bob ∈ C, the maps φAlice

n,m : nAlice⊗mAlice → (n+m)Alice and ψAlice
n,m : (n+m)Alice →

nAlice ⊗mAlice allow users to combine and split their coins in a value-preserving manner,
and the γAlice,Bob

n maps allow them to exchange coins.
Now, a ledger is a (syntactic) morphism a : I → A of C(Nν). A transaction to be

included in a consists of a transformation f : X → Y of C(Nν) along with information
about which outputs of a are to be the inputs of the transformation, which we package as
t = πt(1 ⊗ f ⊗ 1) : A → B. The result of including transaction t in ledger a is then the
composite ledger t◦a : I → B. Put another way, a ledger is given by a list of transformations
in C(Nν):

I
t1−→ A1

t2−→ · · · tk−→ Ak

For the purpose of illustration, we differentiate between m+ n and m⊗ n in our string
diagrams for Nν . We do so by means of the string diagrams for (not necessarily strict)
monoidal categories (see e.g. [3]), as in:

Now, suppose we have a ledger a : I → νCarol
7 ⊗ νAlice

5 :

and resource transformations f1, f2, f3 defined, respectively, by:

Now, form transaction t1 = (1Carol
7 ⊗ f1) and append it to a to obtain t1 ◦ a

Next, form transaction t2 = (1Carol
7 ⊗ f2) and append it to obtain t2 ◦ t1 ◦ a

Tokenomics 2020

7:12 A Foundation for Ledger Structures

Finally, form transaction t3 = (f3 ⊗ 1Bob
3) and append it to obtain t3 ◦ t2 ◦ t1 ◦ a

In this manner, we capture the evolution of the ledger over time. Of course, we can
also reason about whether two sequences of transactions result in the same ledger state by
comparing the corresponding morphisms for equality, although in the case of C(Nν) there
isn’t much point, since all morphisms A→ B are necessarily equal.

5 Conclusions and Future Work

We have seen how the resource theoretic interpretation of monoidal categories, and in
particular their string diagrams, captures the sort of material history that concerns ledger
structures for blockchain systems. Additionally, we have shown how to freely add a notion
of ownership to such a resource theory, and that the resulting category is equivalent to the
original one. We have also shown that these resource theories with ownership admit an
intuitive graphical calculus, which is more or less that of monoidal functors and natural
transformations. Finally, we have used our machinery to construct a simple ledger structure
and show how it might be used in practice.

While we do not claim to have solved the problem of providing a rigorous foundation
for the development of ledger structures in its entirety, we feel that our approach shows
promise. There are a few differnt directions for future research. One is the development of
categorical models for more sophisticated ledger structures, with the eventual goal being to
give a rigorous formal account of smart contracts. Another is to explore the connections of
the current work with formal treatments of accounting, such as [6].

C. Nester 7:13

References
1 N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino. Unravelling bitcoin smart

contracts. In POST 2018, volume 10804 of LNCS, pages 217–242, 2018.
2 N. Atzei, M. Bartolietti, and T. Cimoli. A survey of attacks on ethereum smart contracts. In

POST 2017, volume 10204 of LNCS, pages 164–186, 2017.
3 J.R.B. Cockett and R.A.G. Seely. Proof theory of the cut rule. In E. Landry, editor, Categories

for the Working Philosopher, pages 223–261. Oxford University Press, 2017.
4 B. Coecke, T. Fritz, and R.W. Spekkens. A mathematical theory of resources. Information

and Computation, 250:59–86, 2016.
5 K. Jabbar and P. Bjorn. Infrastructural grind: Introducing blockchain technology in the

shipping domain. In GROUP 2018, 2018.
6 P. Katis, N. Sabadini, and R.F.C. Walters. On partita doppia. CoRR, 1998.
7 A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-

stake blockchain protocol. CRYPTO 2017, Part I, volume 10401 of LNCS, 2017.
8 S. Mac Lane. Categories for the Working Mathematician. Springer, 1971.
9 M.B. McCurdy. Graphical methods for tannaka duality of weak bialgebras and weak hopf

algebras. Theory and Applications of Categories, 26:233–280, 2011.
10 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https://bitcoin.

org/bitcoin.pdf.
11 Peter Selinger. A survey of graphical languages for monoidal categories. In New Structures

for Physics, pages 289–355. Springer, 2010.
12 M. Staples, S. Chen, S. Falamaki, A. Ponomarev, P. Rimba, A.B. Tran, I. Weber, X. Xu, and

J. Zhu. Risks and Opportunities for Systems Using Blockchain and Smart Contracts. Data61
(CSIRO), Sydney, 2017.

13 Gavin Wood. Ethereum: A secure decentralized generalised transaction ledger, 2014. URL:
https://gavwood.com/paper.pdf.

Tokenomics 2020

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://gavwood.com/paper.pdf

Parasite Chain Detection in the IOTA Protocol
Andreas Penzkofer
IOTA Foundation, Berlin, Germany

Bartosz Kusmierz
Department of Theoretical Physics, Wroclaw University of Science and Technology, Poland

Angelo Capossele
IOTA Foundation, Berlin, Germany

William Sanders
IOTA Foundation, Berlin, Germany

Olivia Saa
Department of Applied Mathematics, Institute of Mathematics and Statistics, University of São
Paulo, Brazil

Abstract
In recent years several distributed ledger technologies based on directed acyclic graphs (DAGs) have
appeared on the market. Similar to blockchain technologies, DAG-based systems aim to build an
immutable ledger and are faced with security concerns regarding the irreversibility of the ledger
state. However, due to their more complex nature and recent popularity, the study of adversarial
actions has received little attention so far. In this paper we are concerned with a particular type
of attack on the IOTA cryptocurrency, more specifically a Parasite Chain attack that attempts to
revert the history stored in the DAG structure, also called the Tangle.

In order to improve the security of the Tangle, we present a detection mechanism for this type
of attack. In this mechanism, we embrace the complexity of the DAG structure by sampling certain
aspects of it, more particularly the distribution of the number of approvers. We initially describe
models that predict the distribution that should be expected for a Tangle without any malicious
actors. We then introduce metrics that compare this reference distribution with the measured
distribution. Upon detection, measures can then be taken to render the attack unsuccessful. We
show that due to a form of the Parasite Chain that is different from the main Tangle it is possible
to detect certain types of malicious chains. We also show that although the attacker may change
the structure of the Parasite Chain to avoid detection, this is done so at a significant cost since the
attack is rendered less efficient.

2012 ACM Subject Classification Networks → Security protocols

Keywords and phrases Distributed ledger technology, cryptocurrency, directed acyclic graph, security,
attack detection algorithm

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.8

1 Introduction

With the arrival of Bitcoin [24] a new decentralized payment system based on a trust-less
peer-to-peer network has established. Bitcoin is essentially a protocol for reaching consensus
between independent entities - that do not need to trust each other - on a chronologically
ordered record of transactions. This data structure, which is also called a blockchain, is now
a cornerstone of many other Distributed Ledger Technologies (DLTs) [6], [14], [17], [23].

Despite their great success, events of congestion and the correlated high transaction (tx)
fees [15] show that limitations in throughput, which can become costly, exist for these types
of DLTs. Since these events are effectively created due to the bottleneck of a limit of txs that
can be processed, scalability has become a core research topic. Furthermore, this issue also
hinders the adoption of the technology for applications such as Internet of Things (IoT) [12].

© Andreas Penzkofer, Bartosz Kusmierz, Angelo Capossele, William Sanders, and Olivia Saa;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 8; pp. 8:1–8:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.Tokenomics.2020.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2 Parasite Chain Detection in the IOTA Protocol

To overcome scalability issues, several techniques have been proposed ranging from
increasing block size and frequency, to side chains [10], “layer-two” structures like Lightning
Network [26], Sharding [22], and other consensus mechanisms [14, 17, 7]. Some DLT’s have
also replaced the blockchain structure with a directed acyclic graph (DAG). This approach
is used in IOTA [27] and other protocols [19], [9], [5], [29], [4], [20], [8], [16]. DAG-based
protocols reach consensus on a partially ordered log of transactions, allowing the log to have
width and which can increase the throughput of the system.

In this paper, we study the DAG-based IOTA protocol introduced in [27], where transac-
tions are recorded in a DAG dubbed the Tangle. The vertices in this DAG are transactions.
If there is an edge between two transactions x← y, we say that y (directly) approves x. If
there is a directed path from y to x but no edge, y indirectly approves x. A transaction
with no approvers is called a tip. Under the IOTA protocol, all incoming transactions attach
themselves to the Tangle by approving two (not necessarily distinct) tips.

1.1 The IOTA protocol
Since the DAG structure is heavily determined by the order and manner in which txs are
approved, the algorithm used to select the tips which a new transaction will attach itself to,
is of critical importance. It is important to note, that the nodes in this protocol are free to
choose from the array of available tip selection methods. In this paper we focus on two tip
selection algorithms:

Firstly, the Uniform Random Tip Selection (URTS), is a very basic algorithm: we simply
select a tip from the set of all available tips with a uniform random distribution. Despite
being the most efficient method numerically, it would also be accompanied by security
vulnerabilities and allow for tip selection behavior that is non-beneficial for the safety of the
Tangle [27]. However, as we will see in Section 2.2 it is closely related to the next algorithm,
which is the one that most resembles the current implementation in the protocol. More
particularly, the analytical derivations for the following algorithm depend on the solutions
for this URTS algorithm.

The second tip selection algorithm employs a Monte Carlo Markov Chain: here we select
the tip at the end of a random walk (RW), beginning at the first tx in the Tangle. In the
current implementation of the IOTA protocol, the RW can be biased towards transactions
with large cumulative weight, which is a tx’s own weight plus the sum of all own weights
of directly or indirectly approving txs. The amount of bias is determined by a parameter
α. When α = 0, we dub the RW as Unbiased Random Walk (URW). Consequently, when
α > 0, we dub it Biased Random Walk (BRW). As we will see in Section 2.3 under the
current network conditions and implementation of the IOTA protocol, the BRW has very
similar properties to the URW and, therefore, it is sufficient to study the URW.

1.2 The Parasite Chain attack
Due to the probabilistic nature of the immutability of the ledger state, cryptocurrencies are
subject to certain security concerns [21]. One such concern is that an adversary may revert
the ledger to an earlier state if he possesses a sufficient amount of hashing or voting power
[28]. In practice, such an adversarial action would result in a fork of the ledger and enable
the possibility for a double-spend of funds.

[27] describes several attack scenarios under which an adversary may attempt a double-
spend on the IOTA protocol. In this paper we focus on the Parasite Chain (PC) attack.
In this attack the adversary places a value tx in the main Tangle, whilst also creating a

A. Penzkofer, B. Kusmierz, A. Capossele, W. Sanders, and O. Saa 8:3

2

3

2

5

3

2

2

1

1

1

1

2

0

0

2

3

2

2

3

2

2

1

1

1

1

2

0

0

b) Tangle with Parasite Chain revealed

a) Tangle with no Parasite Chain

1
2

1

2

1
0

Double Spend

Figure 1 Examples of parts of a Tangle. Transactions are represented by squares and approvals
by arrows. The number of approvers of each transaction is in the bottom right corner of each
transaction. Parts (a) and (b) represent the Tangle with and without a conflicting Parasite Chain
attached. Transactions that conflict with the most recent part of the main Tangle are shown in blue.

side chain in secret that contains a double-spending tx, see Fig. 1. Once the PC is revealed
to the network, the attacker then exploits the tip selection algorithm by leading honest
txs to approve the PC instead of the main Tangle. This is possible, through the following
mechanism: firstly, by attaching the PC to a particular tx (the root tx), the cumulative
weight of this root tx can be significantly increased and the RW tip selection algorithm will
then be drawn towards this root. In addition, the attacker can also increase the number of
links from the PC to this root tx, to increase the probability for the RW to continue onto
the PC. If the attack is successful, the part of the Tangle that approves the originally visible
double-spend tx is abandoned and the PC becomes the new main Tangle, thereby changing
the ledger history.

[11] discuss this attack in further detail and show that for certain values of the parameter
α in the BRW, the attack has an increased likelihood to succeed. Furthermore, although the
security is improved with increasing value of α, it should not be selected too high, otherwise
txs would be left behind and excluded from the ledger. Therefore, α has to be selected in
a manner that is a compromise between the safety of the system and avoiding orphanage
of txs, i.e. txs not being approved. More generally [11] also showed that the success of the
attack also depends on other variables, such as the time that the PC is revealed to the main
tangle and the number of root txs the PC is attached to the main Tangle.

In this paper, we present a method to counter the vulnerability of the PC attack by
introducing certain detection mechanisms. These detection methods employ the knowledge
of the underlying structure of the Tangle, more particularly the likelihood for txs to have a
certain number of direct approvers. We show that by measuring the distribution of approvers
for a selected set and comparing it to a reference distribution, the Tangle can be checked for
abnormalities. Upon flagging a suspicious part of the Tangle as a PC, countermeasures can
be taken, such as restarting the RW with an increased α value [25]. Since the tip selection

Tokenomics 2020

8:4 Parasite Chain Detection in the IOTA Protocol

method can be switched or restarted immediately during the detection, an honest tx issuer
who detected the PC, would avoid approving tips of the PC and hence contribute towards
rendering the attack unsuccessful. We show that an adversary would have to significantly
reduce the efficacy of the attack if he wants for the PC to remain undetected.

1.3 Contributions of this paper
Our contributions in this paper are twofold: firstly, we present analytical models that capture
the underlying structure of the Tangle, in the form of the likelihood for txs to have a certain
number of direct approvers. We present models for the URTS and the URW, and we show
that the distribution for the URW is tightly linked with the distribution for URTS. We
compare the analytical models to simulation results and show that generally a good agreement
is reached in the high load regime. In the low load regimes, the model predicts the values
well only if txs are only allowed to approve the same tx once.

Secondly, we describe a method of how to reduce the susceptibility of the IOTA crypto-
currency towards a specific type of double-spend attack, more particularly a Parasite Chain.
This enables a proactive tool against malicious actors and improvements for security. We
measure how ’distant’ a certain sample set of txs is from the derived distributions and we
show that we can employ the distance metric, to effectively detect simple versions of a PC. If
the attacker decides to avoid the detection methods, he is forced to build the PC in a more
complicated way, which is correlated to a decrease of the attack’s efficacy. We demonstrate
this for two ways of selecting sample sets: through RWs and through collecting the txs that
directly or indirectly approve a particular tx, i.e. the future cone of that tx. We conclude
that by combining these two methods, a powerful detection tool is provided to honest tx
issuers that allows them to make their tip selection more safe and PC attacks less likely to
succeed.

2 Model for the Number of Approvers

Due to the complexity of the Tangle, it can be difficult to derive exact solutions which describe
certain mechanics. On the other hand, deterministic solutions can provide a sufficiently
good picture to describe certain mechanics despite their simplified assumptions. Here, we
attempt to discuss the likelihood of a randomly selected tx having a given number of direct
approvers n, through a deterministic model. The model is facilitated by employing a linear
approximation of the exit probability distribution, which represents the likelihood of a tip
being selected.

Since the tip selection is performed probabilistically, the same tip may get selected twice,
although this is only likely to happen in the low load regime, i.e. if the rate of arriving
txs is low. Since the tip selection algorithm is not enforced, it remains up to the node
to decide what to do in this case. Here, we consider two particular scenarios that do not
require rerunning the tip selection algorithm and which are, therefore, considered numerically
efficient options. Initially, we will discuss both scenarios, before focusing on the former in
more detail: in the single edge model (SEM) only one edge is created instead of two, and in
the multi-edge model (MEM) two edges are created to the same tx. As we will show, in the
high load regime, i.e. when the rate of arriving txs is high, SEM and MEM converge to the
same distributions. Since the Tangle is built to allow for high throughput, we will mainly
focus on the high load regime and the difference between SEM and MEM can be neglected.
However, since the protocol should also be analyzed in the low load scenario and the node is
free to choose the tip selection algorithm, the two methods are discussed for completeness
and comparison.

A. Penzkofer, B. Kusmierz, A. Capossele, W. Sanders, and O. Saa 8:5

Once a tx is selected for the tip selection, it is assumed that the Proof-of-Work plus the
propagation to the network equal to the time h, and that no other node will be aware of
the approval before this delay has passed [27]. Let pi be the probability of being selected
by the tip selection algorithm for the i-th tx, Ni the final number of approvers of i and ti
the time of first approval. We notice that pi depends on the number of tips and hence may
change with the arrival of a new tx. Note that if txs i1 and i2 are the approvees of i then
no further txs are attached to them later than ti + h, due to the delay h. It is noteworthy
that the following applies for URW: after ti + h none of the directly or indirectly approved
txs, i.e. the entire past cone of i, receive any further approvers. The exit probability of the
URW at i remains then unaffected after ti + h by the arrival of new tips and pi, and also the
probability for the random walk to pass through the tx, remains constant after that time.
This is not the case if backtracking is allowed, i.e. the RW is allowed to return to the past
cone of i once it left it, however, this is currently not implemented in the IOTA protocol.

Throughout this work we will frequently employ the Poisson distribution function

P (γ, n) = e−γ
γn

n! (1)

where γ is a rate.
In the following sections we employ

I Lemma 1. The number of approvers for a given tx i is given by

Ni = 1 + pi0 + Pois(λi) (2)

where Pois(·) is the Poisson distribution,

λi = λ

∫ ti+h

ti

dt

{
2pi(t) for MEM

2pi(t)− pi(t)2 for SEM (3)

λ is the tx rate in units of h, and

pi0 =
{
pi(ti) for MEM, approximately

0 for SEM (4)

Proof. Assume there is a Poisson process of arriving txs [27] with rate λ, i.e. the number
of arrivals within the interval h after i receives its first approval is given by the random
variable N . Let us consider SEM first. The probability of i receiving an additional approver,
once a tx arrives is p+

i (t) = 1 − (1 − pi(t))2. Hence from the viewpoint of i, txs arrive at
rate p+

i λ (of which all would reference i). Furthermore, for independent events it holds that
P(N = n) = P(M1 +M2 = n), where P(X = x) is the probability that the random variable
X takes the value x, and M1 and M2 are again Poisson processes, with rates µ1 and µ2. We
can, therefore, assume that the arrivals of attachments to i occur through a series of Poisson
processes with rate p+

i λdt at time intervals dt, which leads to the integral form. In the case
of MEM, we consider two rates of arriving tx that approve i: txs that approve i twice or
once, and their rates of arrival are pi(t)2λ and (p+

i (t)− pi(t)2)λ, respectively. With the same
argument as above, we can find the integral form

Ni = 1 + Pois(λi1) + 2Pois(λi2)

where

λi1 = λ

∫ ti+h

ti

2pi(t)(1− pi(t))dt

λi2 = λ

∫ ti+h

ti

p2
i (t)dt

Tokenomics 2020

8:6 Parasite Chain Detection in the IOTA Protocol

These two Poisson processes are independent and can be further combined. Finally, the first
approver also has the likelihood pi0 to approve the same tip twice. This assumption does
not take into account that for small λ the Poisson process has a significant impact on the
number of approvers. More specifically, for small λ the likelihood is increased that a single
tip is simultaneously selected by one or multiple txs and hence the probability to have an
even number of approving edges is increased compared to an odd number. J

Generally the average probability to have n approvers is given by

P (n) =
N∑
i=1

P(Ni = n) (5)

where N is the cardinality of a list of txs that are considered. Since as previously discussed
for URW pi(t) is only variable for a short time (maximally h after i is revealed), we assume
pi(t) = pi∀t is approximately true. The integral forms in (3) can, therefore, be further
simplified, which we employ in the next section.

2.1 Uniform Random Tip Selection
In the URTS algorithm, tips are selected at random from the set of L available tips and with
the most recent assumption pi = L−1 on average. According to [27], the number of tips is
approximately L = 2λ. However, for small λ, the number of tips is limited by one instead.
For simplicity, we assume that

L = 1 + 2λ (6)

Using (5) and (2) the probability to have n approvers (or equivalently n− 1 beyond the first)
is then given by the Poisson distribution function

PU (n) = P (λU , n− 1) (7)

with the rate

λU =
{

2λL−1 for MEM
2λL−1(1− 0.5L−1) for SEM

Note that in the high load regime (i.e. λ is large), the quadratic term can be neglected and
MEM and SEM converge to the same rate, as previously discussed.

Fig. 2 shows a comparison of the numerical and analytical values of PU (n) for both SEM
and MEM. It can be seen that for SEM the model represents the numerical values well.
In both models, the distribution converges towards the same distribution in the high-load
regime. This is because for large λ almost none of the tips are selected twice. However, in
the low load regime (i.e. λ < 10) the predicted values do not match for MEM. This is due to
the discrete nature of the Poisson process, which as described above, is not accounted for.
Furthermore, even numbers of approvers have a higher probability (see n = 4), while odd
numbers of approvers are less likely than predicted (see n = 3).

2.2 Unbiased Random Walk
The tip selection algorithm that is currently employed in IOTA is the Monte-Carlo-Markov-
Chain RW with the parameter α [27]. Typically, analytical solutions are easier to find by
initially considering α = 0, where effects such as txs that are left behind, or the dependence

A. Penzkofer, B. Kusmierz, A. Capossele, W. Sanders, and O. Saa 8:7

10−1 100 101 102
λ

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

1
2
3
4

a) Single-Edge model (SEM)

10−1 100 101 102
λ

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

1
2
3
4

b) Multi-Edge model (MEM)

Figure 2 Probability for a randomly selected tx, in a Tangle created by URTS, to have n approvers
with λ for n = {1, .., 4}. Values from simulation results and analytically predicted values are shown
with continuous and dashed lines, respectively.

of the RW on the cumulative weight, play no role. Here we follow the same path, before
increasing the complexity of the analysis by considering α > 0 in Section 2.3. We employ
SEM for the analysis in this section, since the analytical model provides more accurate results
in this case. However, for most of our analysis, both models would be appropriate, since
both predict the numerical values well in the high-load regime, which is in the focus in this
work. Note that [3] observed that for α = 0, the mean tip number converges to L ≈ 2.1 · λ.
However, employing this observation does not lead to improvements for this model and hence
the same average tip number as for URTS is employed.

For a given number of tips L, we can order the exit probabilities by their likelihood. We
then define the L-normalized exit probability e(x) to be the exit probability distribution that
is normalized from the index interval {1, .., L} onto the relative index interval (0, 1]. For large
enough λ, the expected exit probability of the i− th most likely tip is then approximately
given by

EeL(i) ≈
∫ i/L

(i−1)/L
e(x)dx (8)

The L-normalized exit probability can be expressed as

e(x) = 1 + f(x) (9)

where x ∈ [0, 1],
∫ 1

0 f(x) = 0 and f(x) > −1.
Fig. 3 shows the numerically calculated L-normalized exit probability for URTS and

URW, as well as a linear fit for URW. e(x) has numerically been calculated by averaging over
103 samples of tip sets. For each tip set, 106 tip selections are performed and the tips are
ordered by their exit probability eL(i). Despite the high number of tip selection samples, the
values of indices close to 0 (1) are slightly over- (under-) estimated due to stochastic effects,
as can be seen for URTS where the value is expected to be eU (x) = 1 over the entire interval.
It can be seen that for the fitted curve the numerical values agree well for most of the range,
apart from the smaller indices, where the exit probability is noticeably increased, suggesting
that certain tips in the Tangle have a considerably higher probability to be selected.

Tokenomics 2020

8:8 Parasite Chain Detection in the IOTA Protocol

0.0 0.2 0.4 0.6 0.8 1.0
Relative index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L-
no

rm
al

ize
d

pr
ob

ab
ilit

y

URTS
URW
BRW, α=0.001
Analytical URW

Figure 3 L-normalized exit probability with the ordered relative index number for λ = 100. The
curve for the analytical linear approach is shown for a = 1.3.

For a given relative index number x, we can assume a Poisson process of txs and the
probability density of having n approvers is then given by

pURW (n, x) = P (eURW (x)λU , n− 1) (10)

The expected value is then given by

PURW (n) =
∫ 1

0
dx e−eURW (x)λU

(eURW (x)λU)n−1

(n− 1)! (11)

= PU (n)
∫ 1

0
dx e−f(x)λU (1 + f(x))n−1

As can be seen, the distribution for the URW can be decomposed into a product of the
distribution for URTS times a factor dependent on the exit probability function. This
highlights how these two tip selection algorithms are correlated, and why their distribution
appears similar.

For URW, the probability to pass through a given tx, is equal to the final value of the
exit probability during the time the tx was a tip. Hence to derive the approver statistics
observed along the path of RWs, (10) is weight by e(x), and the expected distribution is

P ∗URW (n) = 1
b

∫ 1

0
dx pURW (n, x)e(x) (12)

where

b =
∞∑
n=0

∫ 1

0
dx pURW (n, x)e(x)

normalizes the probability.

A. Penzkofer, B. Kusmierz, A. Capossele, W. Sanders, and O. Saa 8:9

0.0 0.5 1.0 1.5 2.0
Parameter a

 a) Txs selected from entire Tangle

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y 1
2
3
4
5

0.0 0.5 1.0 1.5 2.0
Parameter a

 b) Txs selected from URW

0.0

0.1

0.2

0.3

0.4

0.5

1
2
3
4
5

Figure 4 Values of (13) and (14) with the parameter a for several values of approver numbers n.
λ = 100.

Linear approach

A simplified approach is presented by employing the distribution f(x) = a(x− 0.5), a ∈ [0, 2],
where a is limited to achieve only positive values for f . The expected value is then given by

PURW (n) = PU (n)g(n− 1) (13)

P ∗URW (n) = PU (n)g(n)∑∞
m=1 PU (m)g(m)

(14)

where

g(n) = 1
a

n∑
j=0

λ−j−1
U

n!
(n− j)!

[
e−yλU (1 + y)n−j

]−0.5a
0.5a

Note that for a→ 0 (13) converges towards URTS:

PURW (n)
PU (n) = −

n−1∑
j=0

(n− 1)!
(n− 1− j)! (n− 2− j) = 1

Fig. 4 shows the probability to have n approvers with the value of the parameter a. As
can be seen in Fig. 4a), introducing a gradient in the exit probability shifts the likelihood of
having a certain number of approvers away from the mean towards less (one approver) or
higher numbers of approvers (more than 3), corresponding to increased or decreased exit
probabilities. On the other hand, it can be seen from Fig. 4b) that the likelihood for a URW
to visit sites with a higher number of approvers, is shifted to only txs with higher numbers
(more than 2), since these are sites more frequently visited by the URW.

From Figs. 3 and 5, we can see that a good agreement is achieved with the numerical
results for a = 1.3.

Tokenomics 2020

8:10 Parasite Chain Detection in the IOTA Protocol

10−1 100 101 102
λ

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ob

ab
ilit

y
1
2
3
4

a) Randomly selecting a tx from the entire
Tangle

10−1 100 101 102

λ

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

1
2
3
4

b) Randomly selecting a tx from an URW

Figure 5 Probability for a tx to have n approvers with λ for n = {1, .., 4}; for SEM and URW tip
selection, and a = 1.3. Values from simulation results and analytically predicted values are shown
with continuous and dashed lines, respectively.

2.3 Biased Random Walk

In the IOTA protocol, the RW is made dependent on the cumulative weight of a tx. The
cumulative weight wx of a tx x is defined as the sum of its own weight, plus all own weights
of txs directly or indirectly approving the tx. The dependency on the RW is introduced to
prevent undesirable behaviors, such as the selection of old tips (lazy tip selection), or certain
types of PCs [27]. In the current implementation of the Tangle, the path of the RW depends,
therefore, on a parameter α and the cumulative weight of txs encountered along the path.
More specifically, the probability to transition from a tx x to a tx y is given by [27]:

P (x y) = exp(αwy)∑
z exp(αwz)

(15)

where the denominator normalizes the probability by summing over all direct approvers z
(including y) of x.

It should be noted that the value of the parameter α ought to be selected carefully.
Selecting the value too low would result in the BRW having little or no improvement to
the security compared to URW, while a too high value would result in txs being orphaned.
Typically, orphanage behavior is observed in simulations at about αλ > 1 [18]. The default
value in the IOTA reference implementation of α = 0.001 [1] ensures that the Tangle structure
is the same at least up to a tx rate of λ = 100, since no orphans are created and the exit
probability is the same, as can be seen in Fig. 3.

With the Minimum Weight Magnitude parameter set to 14 (current setting of the difficulty
in the IOTA protocol), the average time for the PoW in a Core i7 platform is about 4.1s
[2]. At a tx rate in the order of 5 tps (current, over the scope of one day, measured tps by
an IRI node [1]), the expected value for the tx rate is λ ≈ 20. Since λ� 1, the difference
between SEM and MEM is negligible. Furthermore, since λα� 1, the difference between the
exit probabilities and hence the approver distributions of URW and BRW are negligible, as
discussed in the previous paragraph. We, therefore, employ the models developed in Section
2.2 for the following sections.

A. Penzkofer, B. Kusmierz, A. Capossele, W. Sanders, and O. Saa 8:11

3 Parasite Chain detection

The vulnerability of the Tangle to the PC attack is first recognized in [27]. A PC is a
specific type of a double-spend attack, where the attacker issues a tx on the main Tangle and,
simultaneously, issues a double-spending tx, which is not yet revealed. He then continues
to issue further txs that approve the double-spend on the PC in secret, to strengthen the
PC chain, till the receiver accepts the main Tangle double-spend tx. Upon receiving the
goods or value from the to-be-swindled receiver, the adversary then reveals the PC in the
hope that it can outpace the incompatible part of the current main Tangle, by attracting as
many tip selection RWs as possible. If successful, the part of the Tangle that approves the
main Tangle double-spend tx becomes orphaned, and the PC becomes the new main Tangle,
thereby invalidating the main Tangle double-spend tx.

In this paper, we focus on a specific Parasite Chain attack where the adversary pins the
PC to one or more (k) honest txs in the main Tangle, which are issued at a similar time as
the double-spend tx on the main Tangle. We dub this type of a PC k-pinned PC. Generally,
an adversary may choose to attach to multiple root txs. However, for simplicity we assume a
1-pinned PC.

We assume that the adversary attempts to issue as many txs as possible that directly
approve the PC root, as well as the previously issued PC tx. This approach is taken for two
reasons: firstly, by directly or indirectly approving this root tx, the cumulative weight is
increased both by the txs in the main Tangle, as well as by the PC. This can significantly
increase the cumulative weight of the root, compared to the double-spend tx in the main
Tangle. As a result, the RWs that are performed for tip selection will be drawn towards the
root. Secondly, by attaching as many direct approvers to the root, the probability for the
RW to hop onto the PC once the RW passes through the root, depends on the number of
links to the PC. It can, therefore, be increased by directly attaching as many malicious txs
as possible. Fig. 6a) shows the most efficient way of attaching a 1-pinned PC, and we dub it
a simple PC (SPC).

In this section, we describe a methodology for how we can employ the distributions
that we derived in the previous section, to detect a pinned PC. More particularly, since the
distribution of approvers in the PC in Fig. 6a) is significantly different from the distributions
derived in the Section 2, we propose the implementation of a metric that compares the
encountered approver distribution to the expected one, and allows to identify PCs. This
would allow nodes to actively counter the creation and success of PCs.

We define the following distance metric

dP = 1
2

∞∑
n=0
|P (n, S)− Pref (n)| (16)

where P is the measured distribution, or probability vector, that is deduced by measuring on
the sample of size S. In this paper, the sample size is varied between 10 and 100, see Fig. 7.
Pref is the reference distribution (equations (13) or (14)) and the factor 1

2 normalizes the
distance.

As discussed, it is more expensive for the attacker to create txs in the PC with higher
numbers of approvers. Hence, it is useful to put increased weight on txs with higher numbers
of approvers. However, due to the low probability of having a high number of approvers,
the difference between the actual value P (n) and Pref (n) can be relatively large for higher
values of n. To reward having a high number of approvers (instead of penalizing it because
of the high variance), we measure if a tx has more than a given number of approvers, and we

Tokenomics 2020

8:12 Parasite Chain Detection in the IOTA Protocol

Main Tangle

Parasite Chain
DS tx

DS tx

a) 1-pinned simple PC

b) 1-pinned PC1

c) More complex 1-pinned PC

In
cr
ea
si
n
g
P
C
co
m
p
le
xi
ty

In
cr
ea
si
n
g
P
C
effi

ci
en
cy

Figure 6 Different types of PCs with an increasing effort of the adversary to hide the PC from
the detection methods. The number of indicated malicious txs is kept the same for a)-c). With
higher complexity, fewer links to the root tx in the main Tangle are created.

can therefore also employ the distance

dQ = 1
2

∞∑
n=0
|Q(n)−Qref (n)| (17)

where

Q(n) =
∞∑
m=n

P (m) (18)

is the cumulative probability distribution and Qref is the reference cumulative probability
distribution. As will be shown in the following figures, employing dQ instead of dP can lead
to a better analysis, whilst adding little or no computational overhead for calculating the
more complicated metric dQ.

We can employ these metrics in the following way: if the measured distance exceeds a
critical value η, the detection method rejects this path for the RW. More formally, we say
a sample P fails an η-confidence level test if dP > η (or equivalently, the sample Q fails if
dQ > η). The exact procedure after rejecting a path can be manifold. For example, the node
may simply restart the RW from the last point where no suspicious behavior was noted. Or
the node may also switch into some kind of safe mode, where the RW is calculated with a
higher α value [25].

Generally, the measurement of the distance is made on a limited sample size and the
distances dP and dQ can, therefore, only take certain discrete values. To determine how
likely it is that a measurement is treated as a false-positive, i.e. the sample is part of the
main Tangle but has been flagged to be in a PC, we study how likely it is that a certain
distance occurs in a random sample. Due to the discreteness of the above distance metrics, we
investigate the cumulative probability rather than the actual distribution. Note that for small

A. Penzkofer, B. Kusmierz, A. Capossele, W. Sanders, and O. Saa 8:13

Algorithm 1 Integration of detection into tip selection.

input :The starting point of the RW defined as initial_tx
output :The selected tip

1 tx ← initial_tx
2 mode ← standard
3 while tx is NOT a tip do
4 if mode = safe then
5 tx ← safe_step(tx)
6 else
7 tx ← standard_step(tx)
8 if Algorithm 2 = TRUE then
9 mode ← safe

10 tx ← initial_tx

11 return tx

sample sizes S, this discreteness can be observed through the clearly visible discontinuity of
the derivative of the curves, see e.g. Fig. 7 for S = 10. Intuitively, the cumulative probability
also provides a visual representation as to how many samples would be below a given distance,
and how many false-positives we should expect, when setting η.

3.1 Random walk detection
In this method of creating a sample of approver numbers, we collect and update the sample
set of txs while the RW traverses the Tangle. This method is numerically very inexpensive,
since the information for the sample set is readily available, as it is already considered when
performing the RW. Hence the node may also decide to test samples of different lengths
in parallel, in order to distinguish between very local distributions (small sample size, e.g.
S = 10) and more global distributions (e.g. S > 50).

The pseudo code described in Algorithm 1 provides an example high-level overview of
how the PC detection mechanism could be implemented in a tip selection algorithm. The
additional algorithm 2 is added, which updates and evaluates for every RW step a sample
of approver numbers. If the calculated distance d is larger than a given threshold, the
algorithm 2 returns a flag and the tip selection method restarts, in this case, from the initial
starting point of the RW. Furthermore, the RW is changed from the standard RW (with a
standard_step) into a safe mode (safe_step). This safe mode could, for example, be a RW
with an increased α value, as described in [25].

Fig. 7 shows the cumulative probability for the distance to be above a certain value,
where the sample size of considered txs has been fixed to S and Pref is given by (14). It
can be seen that for small values of S the discrete nature of the distance is clearly visible,
while for larger S it becomes increasingly difficult to observe this phenomenon. Note, that
the maximum available number of samples from an RW depends on the depth from which
the RW is started. Furthermore, S should be selected such that local changes (i.e. the start
of a PC) can be detected, which puts further restrictions on the upper limit of S.

Let us assume the adversary attaches a 1-pinned PC to the Tangle, and that with
probability pR a malicious tx directly approves the PC root, as well as the previous malicious
tx that was attached in the same manner. We denote the part of the PC that is constructed

Tokenomics 2020

8:14 Parasite Chain Detection in the IOTA Protocol

Algorithm 2 Sample Management.

input : current tx, sample list of approver numbers
output : bool value wheter PC is detected

1 Add number of approvers of tx to the sample list
2 if Sample size > S then
3 Remove the oldest element from the sample list
4 Calculate distance d by applying Eq. (16) or (17)
5 pc_detected ← (d > threshold)
6 return pc_detected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

S=10
S=20
S=50
S=100
SPC
PCA

a) Distance metric dP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

S=10
S=20
S=50
S=100
SPC
PCA

b) Distance metric dQ

Figure 7 Cumulative probability for the measured distance to be below a given value for several
sample sizes S. λ = 100, URW.

in this way as the main PC. The remaining malicious txs are attached in whatever way seems
most suitable. Then, the most efficient way the adversary can build the PC is with pR = 1,
see Fig. 6a), where all malicious txs are added as direct approvers to the PC root and the
rate at which direct approvers are added to it is given by r = µ.

As can be seen from Fig. 7, an SPC is easily detectable, since even for a small number
of samples S, the measured distance in the PC is larger than the measurements in the main
Tangle. By decreasing pR and attaching to txs along the main PC (1-pinned PC1, see Fig.
6b)), the adversary may render the PC undetectable. However, by doing so he weakens the
attack since fewer edges are attached to the PC root. Note also that in the PC1 in Fig. 6b),
txs that are not part of the main PC are left behind and due to their low cumulative weight,
are therefore unlikely to be selected by the RW as tips.

The selected sample size S should be sufficiently large, since otherwise the detection
method may show little success (or return too many false-positives, if the value of dC is set
too low). For example, denote the following PC as PCA: an adversary employs the strategy
PC1, by adding a link to the main PC with the probability 1− 0.5P ∗URW (2). Then

dP = 1− P ∗(1)− P ∗(2) ≈ 0.26

and the attachment to the root is reduced to the rate

r = (1 + 0.5P ∗URW (2))−1µ ≈ 0.85µ

If S is selected too low (e.g. S = 10) this type of PC may remain undetected, if dP (equation

A. Penzkofer, B. Kusmierz, A. Capossele, W. Sanders, and O. Saa 8:15

16) is employed for detection, as can be seen from Fig. 7a). However, it still may be detectable
when changing the detection metric to dQ (equation 17).

The PC would certainly remain undetected, if txs are added to the main PC, such that
the encountered distribution is P ∗URW (n), i.e. d = 0. Under this condition, the rate is reduced
to

r = (1 +
∑
n=1

(n− 1)P ∗URW (n))−1µ (19)

For example, for λ = 100 and α = 0.0001, r ≈ 0.46µ, which requires the attacker to deploy
the malicious txs in a much less efficient way, hence reducing the efficacy of the entire PC
attack.

3.2 Future cone detection
In a pinned PC, the capability of those txs that are pinned to the root, to divert the RW onto
the PC relies on their cumulative weight growing as fast as possible. In other words, it is
likely that most of the issued malicious txs reference, directly or indirectly, earlier malicious
txs. An effective method to consider most of the PC txs is, therefore, to analyze the future
cone of the txs that are encountered along an RW, where the future cone of a tx is defined
as the set of txs that directly or indirectly approve a given tx.

Note that compared to the method in the previous section, the sample size S can
be significantly larger, since the number of samples in the main Tangle would increase
exponentially with the distance from the cone’s root tx. Until the growth of the future cone
reaches the linear phase, where the rate of txs per unit of distance to the root would be
constant. However, while the method in Section 3.1 is computationally relatively inexpensive,
here we must employ a traverse algorithm to efficiently collect a sample of txs, such as
Breath-First Search or Depth-First Search [13]. It is, therefore, recommended to employ this
control mechanism only occasionally or if suspicion is raised.

Due to the larger possible sample size and the way it is sampled, the adversary must
attempt to achieve a better agreement of the PC with the reference distribution (13). For
example, the relatively inexpensive PC in 6b) would exhibit a high distance dP (dQ), due to
the suspiciously large amount of orphans.

The adversary may still create a PC structure that makes the PC less likely to be detected,
as Fig. 6c) indicates. However, since the future cone envelopes the distribution of all txs
within a certain distance of the investigated root tx (and in the future cone), the necessary
structure becomes significantly more complicated. More specifically, since the reference
distribution itself stems from a structure where all links are employed, this leaves effectively
little to no spare links for the adversary to attach to the PC root: due to the fact that the
PC is created in secret, the only approvers that the txs can receive before being revealed are
the txs from within the PC itself. Hence the average number of approvers in the PC is

nPC =
∑
n

nPPC(n) ≤
∑
n

nPref (n) = 2

where PPC is the probability distribution within the PC and the inequality arises, since the
PC creates links to txs within the main Tangle, without receiving any in return. The second
equality in the above equation is due to the fact that the total average number of edges
per tx in the Tangle must be equal to the number of approvers a tx selects, which is two
in the high load regime. Hence, the PC structure that provides optimal resistance to the
detection method would require most links to be employed within the PC. The adversary
must, therefore, choose a medium between detectability and efficacy of the PC, by deploying
links purely within the PC, i.e. he cannot create direct links to the PC root.

Tokenomics 2020

8:16 Parasite Chain Detection in the IOTA Protocol

In conclusion, the main observation is that, contrary to the approach in Section 3.1 where
adding a few tx according to the method in 6b) may be sufficient, in this approach it is more
difficult to reproduce the reference distribution. More precisely, in order to imitate the exact
distribution, all adversary txs would need to be deployed for mimicking the distribution.

3.3 Final remarks
Further improvements can be envisioned for the presented detection tools. For example,
we may combine the RW detection in Section 3.1 and the future cone detection 3.2, since
their distributions are different as can be seen by comparing Figs. 5a) and 5b). Avoiding
both detection mechanisms may be noticeably more difficult and their combination could,
therefore, lead to an improved success rate. The numerically expensive method in Section
3.2 may also be more suitable for taking larger samples, while the method in Section 3.1 can
be easily implemented without much additional numerical effort. Furthermore, the sample
size could be continuously varied and alternative sampling mechanisms could be envisioned,
which would make it more difficult for the adversary to adopt his strategy.

4 Conclusion

We present models to understand and predict a particular aspect of the Tangle structure,
more specifically, the likelihood for a transaction to obtain a particular number of direct
approvers. We derive solutions for two tip selection mechanisms: firstly, for a Tangle that is
built employing a uniform random selection and secondly, if it is constructed employing a
random walk. We show that the distributions for the two tip selection methods are linked
tightly and also that the distribution depends on whether samples for transactions are taken
from the set of all transactions, or only from transactions which are encountered along
random walks.

We then employ the models for the approver distributions to detect a specific double-spend
attack on the IOTA cryptocurrency, namely the Parasite Chain attack. In this type of
attack, an adversary attempts to trick a node’s tip selection mechanism into approving a
double-spend transaction, by building a side Tangle in secret and revealing it at a suitable
moment. Since the efficacy of the attack relies on building a side tangle that directly approves
a limited set of transactions in the main Tangle, the underlying structure of that Parasite
Chain is noticeably different to the main Tangle. By measuring the distance to the derived
distributions on direct approvers, it is possible to detect certain forms of this side chain. It
is shown that the quality of the detection depends on the sample size and we, therefore,
propose two different methods of sampling. Firstly, a numerically inexpensive method is
proposed, where the node may record the approver statistics along the path of a random
walk. However, since the random walk moves relatively fast through the Tangle, a limited
amount of transactions can be sampled. In the second approach, the node chooses to sample
the future cone of a given transaction. This would ensure that most of the transactions in
the Parasite Chain can be measured against the expected distribution.

Through these methods, certain structures of the Parasite Chain may be detectable. This
would allow the honest tx issuers to improve their tip selection algorithm to be more safe
and may prevent Parasite Chain attacks from being successful. On the other hand, if the
adversary chooses to avoid detection by constructing more complex forms that would be
more difficult to detect, he has to deploy a significant proportion of transactions in a less
effective manner. In either case, the proposed methods present a tool which can reduce the
threat imposed by Parasite Chains.

A. Penzkofer, B. Kusmierz, A. Capossele, W. Sanders, and O. Saa 8:17

References

1 https://github.com/iotaledger/iota.go.
2 Elsts A., Mitskas E., and Oikonomou G. Distributed Ledger Technology and the Internet of

Things: A Feasibility Study, 2019.
3 Kuśmierz B., Staupe P., and Gal A. Extracting Tangle Properties in Continuous Time via

Large-Scale Simulations, 2017.
4 Iddo Bentov, Pavel Hubáček, Tal Moran, and Asaf Nadler. Tortoise and hares consensus: the

meshcash framework for incentive-compatible, scalable cryptocurrencies. Cryptology ePrint
Archive, Report 2017/300, 2017. URL: https://eprint.iacr.org/2017/300.

5 Xavier Boyen, Christopher Carr, and Thomas Haines. Blockchain-Free Cryptocurrencies: A
Framework for Truly Decentralised Fast Transactions. Cryptology ePrint Archive, Report
2016/871, 2016. URL: https://eprint.iacr.org/2016/871.

6 Vitalik Buterin et al. A next-generation smart contract and decentralized application platform,
2014. URL: https://github.com/ethereum/wiki/wiki/White-Paper.

7 Vitalik Buterin and Virgil Griffith. Casper the Friendly Finality Gadget. ArXiv e-prints, page
arXiv:1710.09437, October 2017. arXiv:1710.09437.

8 Tai-Yuan Chen, Wei-Ning Huang, Po-Chun Kuo, Hao Chung, and Tzu-Wei Chao. DEXON:
A Highly Scalable, Decentralized DAG-Based Consensus Algorithm. ArXiv e-prints, page
arXiv:1811.07525, November 2018. arXiv:1811.07525.

9 Anton Churyumov. Byteball: A decentralized system for storage and transfer of value, 2016.
URL: https://byteball.org/Byteball.pdf.

10 Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba,
Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On scaling decentralized
blockchains. In International Conference on Financial Cryptography and Data Security, pages
106–125. Springer, 2016.

11 Andrew Cullen, Pietro Ferraro, Christopher King, and Robert Shorten. Distributed ledger
technology for iot: Parasite chain attacks. CoRR, 2019.

12 Ali Dorri, Salil S Kanhere, and Raja Jurdak. Towards an optimized blockchain for iot.
In Proceedings of the Second International Conference on Internet-of-Things Design and
Implementation, pages 173–178. ACM, 2017.

13 Tom Everitt and Marcus Hutter. A Topological Approach to Meta-heuristics : Analytical
Results on the BFS vs . DFS Algorithm Selection Problem . CoRR, pages 1–58, 2018.
arXiv:arXiv:1509.02709v2.

14 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68. ACM, 2017.

15 Huberman Gur, Leshno Jacob D., and Moallemi Ciamac C. Monopoly without a Monopolist:
An Economic Analysis of the Bitcoin Payment System, 2017.

16 K. Karlsson, W. Jiang, S. Wicker, D. Adams, E. Ma, R. van Renesse, and H. Weatherspoon.
Vegvisir: A Partition-Tolerant Blockchain for the Internet-of-Things. In Proceedings of the
IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pages
1150–1158, July 2018. doi:10.1109/ICDCS.2018.00114.

17 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference, pages 357–388. Springer, 2017.

18 Bartosz Kuśmierz and Alon Gal. Probability of being left behind and probability of becoming
permanent tip in the Tangle, 2016.

19 Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols. In
Proceedings of the 19th International Conference on Financial Cryptography and Data Security,
pages 528–547. Springer, 2015.

Tokenomics 2020

https://eprint.iacr.org/2017/300
https://eprint.iacr.org/2016/871
https://github.com/ethereum/wiki/wiki/White-Paper
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1811.07525
https://byteball.org/Byteball.pdf
http://arxiv.org/abs/arXiv:1509.02709v2
https://doi.org/10.1109/ICDCS.2018.00114

8:18 Parasite Chain Detection in the IOTA Protocol

20 Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao. Scaling Nakamoto
Consensus to Thousands of Transactions per Second. ArXiv e-prints, page arXiv:1805.03870,
May 2018. arXiv:1805.03870.

21 Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. A survey on the security
of blockchain systems. Future Generation Computer Systems, August 2017. doi:10.1016/j.
future.2017.08.020.

22 Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 17–30. ACM, 2016.

23 Ujan Mukhopadhyay, Anthony Skjellum, Oluwakemi Hambolu, Jon Oakley, Lu Yu, and
Richard Brooks. A brief survey of cryptocurrency systems. In Proceedings of the 14th Annual
Conference on Privacy, Security and Trust (PST), pages 745–752. IEEE, 2016.

24 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https:
//bitcoin.org/bitcoin.pdf.

25 Ferraro P., King C., and Shorten R. Iota-based directed acyclic graphs without orphans, 2019.
26 Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant

payments, 2016. URL: https://lightning.network/lightning-network-paper.pdf.
27 Serguei Popov. The tangle, 2015. URL: https://iota.org/IOTA_Whitepaper.pdf.
28 Meni Rosenfeld. Analysis of hashrate-based double-spending. CoRR, pages 1–13, 2014.

arXiv:arXiv:1402.2009v1.
29 Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable

cryptocurrency protocol. Cryptology ePrint Archive, Report 2016/1159, 2016. URL: https:
//eprint.iacr.org/2016/1159.

http://arxiv.org/abs/1805.03870
https://doi.org/10.1016/j.future.2017.08.020
https://doi.org/10.1016/j.future.2017.08.020
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://iota.org/IOTA_Whitepaper.pdf
http://arxiv.org/abs/arXiv:1402.2009v1
https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2016/1159

Implementation Study of Two Verifiable Delay
Functions
Vidal Attias
IOTA Foundation, Berlin, Germany
vidal.attias@iota.org

Luigi Vigneri
IOTA Foundation, Berlin, Germany
luigi.vigneri@iota.org

Vassil Dimitrov
IOTA Foundation, Berlin, Germany
vassil@iota.org

Abstract
Proof of Work is a prevalent mechanism to prove investment of time in blockchain projects. However,
the use of massive parallelism and specialized hardware gives an unfair advantage to a small
portion of nodes and raises environmental and economical concerns. In this paper, we provide an
implementation study of two Verifiable Delay Functions, a new cryptographic primitive achieving
Proof of Work goals in an unparallelizable way. We provide simulation results and an optimization
based on a multiexponentiation algorithm.

2012 ACM Subject Classification Computing methodologies → Simulation evaluation

Keywords and phrases Blockchain, Distributed Ledger, Verifiable Delay Function, Cryptography,
Simulation, RSA

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.9

1 Introduction

In Distributed Ledger Technology (DLT) project, the protocol can ask participants to invest
scarce resources to guarantee their stakes in the good development of the network. These
scarce resources can be time, money, hard drive storage, etc. The most famous mechanism
of proving investment is Proof of Work (PoW) [2] where a user tries to find a correct input
of a hashing function such that the output begins with a certain amount of zeros in its
binary representation. This method originally intended to prove the investment of the user’s
time. However, its parallelizable nature has led to the so-called “mining races”, presenting
now serious environmental and economical concerns. In some alternative protocols, such as
IOTA [22], the network does not make any distinction between miners and users. Hence,
an explicit rate control mechanism becomes necessary to limit user’s transactions and to
prevent synchronicity losses between nodes. The basic idea is to impose on every user the
computation of certain work to cap their throughput. If this work is performed through
PoW, specialized hardware could solve it much faster than low power devices, leading to
unfair advantages and potentially leading to a denial of service attacks. Conversely, our
suggestion is to use an anti-spam mechanism based on Verifiable Delay Functions (VDFs).

A VDF is a function defined formally by Boneh et al. [7] that runs in a minimum amount
of time which cannot be parallelized, but is exponentially easier to verify. One can set a
certain difficulty and a certain amount of time of computing as parameters of the VDF. The
VDF solution is unique and sound, which means an adversary has negligible chances to find
the correct solution by randomly guessing. VDFs have been largely investigated on their
theoretical aspect, however, there are no academic results on implementation metrics to

© Vidal Attias, Luigi Vigneri, and Vassil Dimitrov;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 9; pp. 9:1–9:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5095-4740
mailto:vidal.attias@iota.org
mailto:luigi.vigneri@iota.org
mailto:vassil@iota.org
https://doi.org/10.4230/OASIcs.Tokenomics.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2 Implementation Study of Two Verifiable Delay Functions

our knowledge although some competitions gave some results on FPGA. In this paper, we
make the following contributions: (i) we study two constructions proposed by Pietrzak and
Wesolowski, (ii) compare their behavior in the experimental aspect, and (iii) we provide an
optimization using a multiexponentiation algorithm.

A VDF is composed of three algorithms.

The setup which initializes the environment in which the VDF will be evaluated, for
example, RSA group or elliptic curves and setups an input space X and an output space
Y.
The evaluation which takes as an input an element x ∈ X and a certain difficulty
τ ∈ N and outputs an element y ∈ Y and eventually a proof π which can speed up the
verification.
The verification where a veryfier takes as an input (x, τ, y, π) and outputs > if y is indeed
the right output otherwise it returns ⊥.

VDFs also have applications in random number generation [7, 18], RSA accumulators
(primitives to produce timestamping and membership testing in a space-efficient way) or
Proof of Replication [3, 15], which is an optimized version of Proof of Space [14].

The rest of the paper is organized as follows: in Section 2 we will present the previous
work on VDFs and a multiexponentiation method; in Section 3, we will show how these VDFs
behave when implemented, and in 4 we will present two VDF optimizations; in Section 5, we
will discuss the aforementioned results and how to choose the RSA modulus choice, and we
will conclude our paper in Section 6.

2 Related work

A simple way to impose a rate control mechanism in DLT protocols is to ask users to compute
some work which takes a roughly predictable time as proposed in [2]. However, this proposal
suggests the usage of PoW. Its parallelizable nature leads to very different solution time
between specialized and non-specialized hardware. In this section, we present other functions
that take a long time to compute but are simple to verify.

Rivest et al. [24] have first defined in 1978 time-lock puzzles based on squaring in an RSA
group and are tasks inherently sequential with a difficulty easy to set. Bitansky et al. [4]
then provided a formal framework for time-lock puzzles. Nonetheless, a verifier needs to
know a private key to verify the puzzle solution, which prevents from building a universally
verifiable mechanism.

Later, Boneh et al. [7] have formalized VDFs providing a high-level framework: in this
context, two constructions were proposed by Pietrzak [21] and Wesolowski [26] both using
RSA groups, in a similar but new way than time-lock puzzles, and differing in their proofs.
VDFs in their most general definition, are universally verifiable functions taking a sequential
time to compute. De Feo [12] proposed a third construction based on elliptic curves. However,
this construction allows only one difficulty per setup which is a critical flaw when we need a
dynamic challenge.

In the next subsections, we introduce some definitions (Section 2.1), we present the
details of Wesolowski and Pietrzak’s constructions (Section 2.2 and 2.3 respectively), and we
provide optimization for the evaluation of the Wesolowski VDF based on multiexponentiation
(Section 2.4).

V. Attias, L. Vigneri, and V. Dimitrov 9:3

2.1 RSA environments
The RSA setup [24] is one of the oldest public key ciphering cryptosystems and yet still
massively used. The idea is to generate a big number N = p · q with p and q two prime
numbers of the same order and N a λ-bits number. Typically we use λ = 2048 for high
security. We then define φ(N) = (p− 1) · (q− 1) the Euler’s totient function. Then the group
Z
nZ = {0, 1, . . . , N − 1} is called an RSA group.

2.2 Efficient VDF - Wesolowski
2.2.1 Setup
The Wesolowski’s VDF setup requires λ, and a security parameter k (typically between
128 and 256) as an input. It generates an RSA public modulus N of bit length λ and a
cryptographic hashing function H : {0, 1}∗ 7→ {0, 1}2k. We then define, for anym ∈ {0, 1}∗,
Hprime(m) = next_prime(H(m)) returning the closest prime numbers larger or equal to
H(m).

2.2.2 Evaluation
The evaluation takes as input τ ∈ N and m ∈ {0, 1}∗, and then computes x = H(m) and
solves the challenge y = x2τ mod N . It is important to know that if the evaluator knows
φ(N), it can cut this computation because x2τ mod N = x2τ mod φ(N) mod N which reduces
considerably the exponentiation cost.

2.2.3 Proof
The proof begins by computing l = Hprime(x+ y) and then π = xb2

τ/lc mod N . This can be
parallelized and for s cores it takes a 2τ

s log(τ) time. At the end of this phase, the evaluator can
publicly use the pair (l, π) as a proof of computation. In Algorithm 1 we present a pseudo
code of evaluation and proof phases.

Algorithm 1 Evaluation and proof of the Wesolowski construction.

input :m ∈ {0, 1}∗, τ ∈ N
output : π ∈ [0, N − 1], l prime ∈ [0, 22k − 1]
x← H(m)
y ← x

for k ← 1 to τ do
y ← y2 mod N

end
l← Hprime(x+ y)
π = xb2

τ/lc mod N

return (π, l)

2.2.4 Verification
A verifier takes as an input (m, τ, l, π) and computes x = H(x) and r = 2τ mod l and then
y′ = πl · xr mod N and finally checks whether Hprime(x+ y′) = l. This operation takes a
time λ4 and is thus independant of T . In Algorithm 2 we present a pseudo code for this
phase.

Tokenomics 2020

9:4 Implementation Study of Two Verifiable Delay Functions

Algorithm 2 Verification of the Wesolowski VDF.

input : x, τ, π, l
output :> or ⊥
x← H(m)
r ← 2τ mod l

y ← πl · xr mod N

if l = Hprime(x+ y) then
return >

else
return ⊥

end

2.2.5 Overhead on the network

The output size of a VDF can be a critical matter in network considerations. Fortunately,
Wesolowski’s VDF has a tiny footprint. An evaluation output is composed of elements of the
RSA group π which is at most λ bits long and a prime number of size at most 2 · k.

2.3 Simple VDF - Pietrzak

2.3.1 Setup

The setup part of the Pietrzak’s VDF is the same the Wesolowski’s one.

2.3.2 Evaluation

The evaluation part is also similar, i.e., computing y = x2τ mod N .

2.3.3 Proof

We assume τ = 2t for the sake of simplicity. Computing the proof uses some variables defined
as following. We set (x1, y1) := (x, y) and for i ∈ [1, t],

µi := x2τ/2i

i mod N

ri := H(xi + yi + µi)
xi+1 := xrii · µi mod N

yi+1 := µrii · yi mod N

The proof is thus π = {µi}i∈[1,t]. One can see it is heavier than the Wesolowski’s VDF as
there are log(T) numbers of size λ to transmit, which can be about 40KB in usual conditions.
This step has a complexity of 2τ

s
√

(τ)
with s being the amount of processors. In Algorithm 1

we show pseudocode to compute the verification and proof of the Pietrzak’s VDF.

V. Attias, L. Vigneri, and V. Dimitrov 9:5

Algorithm 3 Evaluation and proof of the Pietrzak construction.

input :m ∈ {0, 1}∗, τ ∈ N
output : π ∈ [0, N − 1]t
t← blog2(τ)c
x← H(m)
y ← h

for k ← 1 to τ do
y ← y2 mod N

end
(x1, y1)← (x, y)
for i← 1 to t do

µi ← x2τ/2i

i

ri ← H(xi + yi + µi)
xi+1 ← xrii · µi mod N

yi+1 ← µrii · yi mod N

end
return π ← {µi}i∈[1,t]

2.3.4 Verification
In the verification part, the verifier will parse π and check that each element is in the SA group
Z
NZ . If so, it will recompose xt+1 and yt+1 in the same way as the prove part by computing

ri := H(xi + yi + µi)
xi+1 := xrii · µi mod N

yi+1 := µrii · yi mod N

and then check that

yt+1
?= x2

t+1 mod N (1)

and output > if it holds or ⊥ otherwise.
This step can be achieved with a complexity of log(T). In the Algorithm 4 we present a

pseudocode computing this verification.

2.4 Dimitrov’s multiexponentiation
The Wesolowski’s construction operates double exponentiation in the verification phase when
computing πl · xr mod N . The use of a modular multiexponentiation algorithm is then
profitable. A multiexponentiation is computing xa · yb mod n. However, computing xa
mod , yb mod n, and then their product, even with the optimal algorithms available, is
not the optimal way to do so [13]. Thus, Dimitrov et al. [13] proposed two algorithms to
compute multiexponentiations with better average performances. It presents two versions, a
first one performing similarly to the binary exponentiation method [17] and a second one very
lookalike but using recoding to reduce the number of multiplications. The first algorithm
can be found in Algorithm 5. Computing the two separate exponentiations should require in
average 2 log 2(max(a, b)) multiplications while the Dimitrov’s algorithms claims to require
in average 7

4 log 2(max(a, b)) multiplications.

Tokenomics 2020

9:6 Implementation Study of Two Verifiable Delay Functions

Algorithm 4 Verification of the Pietrzak construction.

input : x, τ, π
output :> or ⊥
for µ in π do

if µ >= N then
return ⊥

end
(x1, y1)← (x, y)
for i← 1 to t do

ri ← H(xi + yi + µi)
xi+1 ← xrii · µi mod N

yi+1 ← µrii · yi mod N

end
if yt+1 = x2

t+1 then
return >

else
return ⊥

end

3 Simulation results

We present now the implementation results of the Wesolowski and Pietrzak VDFs to get real-
life estimations. We run the simulations for values of τ between 216 and 220 which requires
an evaluation time in the order of seconds or minutes. We have also studied the influence of
the RSA modulus bit length λ on the performances and used values in {512, 1024, 2048}. All
the x-axes are in log2-scale if not specified otherwise.

3.1 Evaluation time analysis
In Figure 1, we present the evaluation time for Pietrzak and Wesolowski VDFs with the
x-axis in linear scale. We have identical values for Pietrzak and Wesolowski VDFs. We can
see a clear linear growth allowing an easy tuning of the difficulty. It is important to see the
clear impact of the RSA group’s size as it yields a great variation.

3.2 Proof time analysis
In Figure 2, we show the proving time for Pietrzak and Wesolowski VDFs. They are of
the same order of the evaluation which is a serious drawback, forcing users to spend more
time after having evaluated the VDF. Reducing the proof computation time is one of the
important goals of both constructions. As predicted in the theoretical part, Pietrzak VDF
achieves better timing.

3.3 Verification time analysis
In Figure 3, we display the verification time for both constructions. We can see that the
Pietrzak construction achieves timing under 1 ms even with 2048 bits RSA groups. However,
it is more complicated for the Wesolowski VDF which achieves good timing only for RSA
groups with a bitlength under 1024. We can also see the dependence on τ for the Pietrzak
verification time grows in O(log τ) where the Wesolowski one is independent of τ .

V. Attias, L. Vigneri, and V. Dimitrov 9:7

Algorithm 5 Dimitrov multiexponentiation algorithm.

For n ∈ N, we have {ni}i∈N such as n =
∑∞
i=0 ni2i and ni = 0 ∀ i > blog2(n)c

input : x, y, a, b,N
output : xa · yb mod N

h := max(blog2 ac+ 1, blog2 bc+ 1)
z = 1
q = x · y mod N

for i = h− 1 down to 0 do
z := z ∗ z mod N

if ai = 1 and bi = 0 then
z := z ∗ x mod N

else if ai = 0 and bi = 1 then
z := z ∗ y mod N

else if ai = 1 and bi = 1 then
z := z ∗ q mod N

end
return z

It is here interesting to see the impact of the security parameter k in the verification time.
We run for a 2048 bits RSA group different values of k in {96, 128, 160} for the Wesolowski
VDF, and observed the effect. We can see that choosing the right value for k plays a great
role in the verification time. The plot can be found in the Figure 4.

4 VDF optimizations

In the Wesolowski construction, there is a need for the evaluator and the verifier to compute
a multiexponentiation, πlxr mod N . Using the Dimitrov’s multiexponentiation could speed
up this part. We can split the computing time of this algorithm into two main parts. On
the one hand, the actual modular multiplication which is uncompressible and we rely on the
arbitrary precision library, NTL [25] to be as fast as possible on these operations. On the
other hand, we have the whole bit scanning process which determines which multiplication
to make and which can be optimized. We have tried several implementations to attempt
optimizing performances and address the fact that we evaluate the most significant bits first
when multiplying and it is not trivial to find them efficiently.

4.1 Techniques used

4.1.1 Using strings

The original Dimitrov’s algorithm [13] requires to find the binary representation g of a and b
in the Pekmestzi’s “binary-like” complex representation [20] which is actually interlacing a
and b’s binary representations such as g2k+1g2k = akbk∀ ∈ N (these are not numbers products
but strings concatenations). The algorithms will scan g by packets of 2 bits in order to make
multiplications.

We propose a slight improvement here which bypasses the computation of g but directly
tests the value of ai and bi without using g. This is what we wrote in Algorithm 5.

Tokenomics 2020

9:8 Implementation Study of Two Verifiable Delay Functions

220221 222 223 224 225

Number of exponentiations

0

10

20

30

40

50
Ti

m
e

(s
)

Evaluation time C++
=512
=1024
=2048

Wesolowski
Pietrzak

Figure 1 Evaluation time for Pietrzak and Wesolowski VDFs in C++.

4.1.2 Using powers of 4

As the std::string C++ structure is quite low when compared to numbers manipulation,
we suggest to make use of numbers and consider g as a number such as g =

∑
k∈N gk4k with

gk = ak + 2bk. It is easy to see that this form covers exactly the four cases encountered when
multiplying. Thus we only need to make divisions by 4i and a modulus 4 to get the values gi
for i ∈ N. Then we multiply accordingly to the value of gi.

4.1.3 Using chunked numbers

The problem with the latter improvement is that with big exponents, g can become huge,
and then we are forced to consider it as a NTL arbitrary precision number and it slows down
the execution and the multiple divisions by 4i require an increasing time as the exponent
grows. So we tried to split g in multiple chunks of a fixed size (typically some unsigned int
or unsigned char) and store them. However, as we wanted to have an algorithm working
with exponents of unknown size, we need to use a dynamically growing container such as the
std::vector.

4.1.4 Using chained lists

In our last improvement, we tried to optimize even more this process by using chained lists
to get rid of the std::vector. We believed this would have better performances because
we get rid of the std::vector overhead and starting from the most significant bit is not a
problem anymore because the current pointer points to the most significant chunk.

V. Attias, L. Vigneri, and V. Dimitrov 9:9

20 21 22 23 24 25
Number of exponentiations

0

10

20

30

40
Ti

m
e

(s
)

Proof time C++
=512
=1024
=2048

Wesolowski
Pietrzak

Figure 2 Proof time for Pietrzak and Wesolowski VDFs in C++.

4.2 Multiexponentiation performances
We have run the various optimizations proposed for multiexponentiation and compared them
with the naive separate exponentiations using NTL. As expected, we can see that the strings
method is the slowest, followed by the power of 4 one. However, using chained lists is slower
than chunks contrary to our expectations. This can be explained by the use of memory
allocations for each new element of the chained list. We could improve this by allocating
multiple elements at the same time to reduce the overhead. However, despite all our efforts,
we were unable to compete with the built-in separate exponentiations. This can be explained
by the thin theoretical improvement of Dimitrov’s multiexponentiation which is only 8

7 times
as fast. Furthermore, the NTL library is optimized to the bones so competing with it requires
more advanced programming skills.

4.3 Exponentiation with constant radix in Pietrzak VDF
In this construction, almost every exponentiation which is computed in actually an expo-
nentiation in radix x, the input value. Pietrzak [21] provides an example of how to leverage
this property to improve performances but we extend this idea. This optimization is merely
identical in the evaluation and the verification parts. We use a logarithmic notation meaning
that for a number z, we define xz = z. Then we have the recursive definition for the following
values

µi = 2
Ti
2 · xi

xi+1 = ri · xi + µi

yi+1 = ri · µi + yi

Tokenomics 2020

9:10 Implementation Study of Two Verifiable Delay Functions

220 221 222 223 224 225

Number of exponentiations

0.0

0.2

0.4

0.6

0.8
Ti

m
e

(m
s)

Verification time for Pietrzak and Wesolowski s VDF

=1024
=2048
=3072

Figure 3 Verification time for Pietrzak and Wesolowski VDFs in C++.

It is then straightforward to show that the values µ′i, µi and xi are exponentiations of x.
Then keeping a trace of these values allows quick exponentiation when using precomputations
however one should be aware that without precomputations it does not bring any improvement.
Besides, this technique has a low memory consumption as we do not need to store the different
values xi and yi because of the iterative aspect of the calculation. We have not implemented
this technique yet and it would be interesting to see if we have a sensible performance
improvement.

5 Discussion

5.1 Comparison between Pietrzak and Wesolowski VDFs
The simulations of Pietrzak and Wesolowski’s constructions give a clear advantage for
Pietrzak’s one in terms of the performance of the verification step. However, we have to
take into account the overhead induced in the network. As Pietrzak’s proof consists of log(τ)
elements of the RSA group, the verifier should transmit log(t) + 1 elements of 2k bits which
can represent an overhead of 40KB only for the rate control protocol. This is not viable
for DLT protocols, where transaction size must be small to optimize network throughput.
Conversely, the Wesolowski’s proof is a single element of the RSA group and a small prime
number thus the overhead represents only a few KB.

5.2 The RSA modulus
The RSA modulus is a fundamental parameter in the Pietrzak and Wesolowski’s constructions,
and keeping its factorization is the heart of their security. Indeed, someone knowing its
factors p and q can easily compute the Euler totient function φ(N) = (p−1) · (q−1) and then
compute the evaluation in a quasi-instant time because x2τ mod N = x2τ mod φ(N) mod N .

V. Attias, L. Vigneri, and V. Dimitrov 9:11

Figure 4 Verification time Wesolowski VDF when varying k with λ = 2048.

The factorization hardness of an RSA modulus is directly related to its bit length. In
Table 1, we present the equivalency between RSA key length and its bit-level security. A
k bit-level security means that it takes around 2k operations to break it. It is estimated
that 112-bits security is sufficient until 2030 [10] but for further uses a 128 bit-level security
should be chosen. We then suggest using a 2048 bit long RSA modulus for VDF use.

Table 1 Equivalency between RSA keys length and bit-level security [19].

RSA key length Bit-level security
1024 80
2048 112
3072 128
7,168 192
15,360 256

Finally, a crucial point of using VDFs for DLT applications, especially for permissionless
technologies, is how to generate such a modulus in a decentralized way and guarantee that
no one can retrieve the factorization, even the nodes having participated in its generation.
The distributed generation of RSA keys has first been studied by Boneh and Franklin [8],
and its security and performances have been then improved by [1, 11, 23, 9, 6]. The most
recent algorithm designed by Frederiksen et al. guarantees a (n− 1) security (i.e., at least
one of the participants is honest and follows the rules) with very fast performances [16].

Tokenomics 2020

9:12 Implementation Study of Two Verifiable Delay Functions

0

8 9 10
Bit length of the numbers

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Co

m
pu

ta
tio

na
l t

im
e

(m
s)

Comparison between multiexponentiation techniques
Strings
Power of 4
Chained lists
Chunks
Built-in

Figure 5 Multiexponentiation improvements comparison.

Table 2 Performance comparison between PoW and VDF.

Hardware PoW VDF
Hash/s (speedup factor) Squaring/s (speedup factor)

CPU 104 (×1) 106 (×1)
FPGA 1010 (×106) 3 · 107 (×30)
ASIC 1012 (×108) n/a

5.3 Comparison with Proof of Work

As mentioned in Section 1, VDFs can be used as a non-parallelizable PoW. Therefore, it
is interesting to see the VDF performance when using highly specialized hardware such
as FPGAs or ASICs which normally speed the PoW computation up to several orders of
magnitude. In Table 2, we have collected the potential performance increase between PoW
and VDF for different hardware [5]. In Table 3, we have estimated the potential bandwidth
occupation when hardware generates IOTA transactions [22] which are encoded in 1.6KB.
The difference between PoW and VDF is clear: the intrinsically not parallelizable nature
of VDFs allows us to keep a very low throughput for a node even with an FPGA hardware.
Currently, no ASICs are available for the computation of VDFs.

6 Conclusion

In this paper, we have presented an analysis of two VDFs, Wesolowski and Pietrzak’s
constructions, both based on exponentiations in RSA groups. Our work focused on simulating
the computation of such VDFs to study the viability of their use in rate control for DLTs. We

V. Attias, L. Vigneri, and V. Dimitrov 9:13

Table 3 Spamming potential comparison between PoW and VDF.

Hardware PoW VDF
CPU 1.4 kbps 1.9 kbps
FPGA 1.3 Gbps 58 kbps
ASIC 120 Gbps n/a

have seen that, although the Pietrzak’s construction has better performances, its overhead
on the network makes it not viable in certain contexts. Hence, the Wesolowski’s one makes a
better candidate, although its verification times is larger. Besides, we have suggested using
multiexponentiation algorithms to compute faster Wesolowski’s verification.

References
1 Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared

secret with application to the generation of shared safe-prime products. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 2442, pages 417–432, 2002. URL: https://eprint.iacr.
org/2002/029.pdf.

2 Adam Back. Hashcash - A Denial of Service Counter-Measure. Technical Report August,
Hashcash, 2002.

3 Juan Benet, David Dalrymple, and Nicola Greco. Proof of Replication. Technical report,
Stanford University, 2017. doi:10.1007/s00221-007-1153-3.

4 Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, and Vinod Vaikuntanathan.
Time-lock puzzles from randomized encodings. In ITCS 2016 - Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, pages 345–356, 2016.
doi:10.1145/2840728.2840745.

5 Bitcoin Wiki. Mining hardware comparison - Bitcoin Wiki. URL: https://en.bitcoin.it/
wiki/Mining_hardware_comparison.

6 Simon R. Blackburn, Mike Burmester, StevenD. Galbraith, and Simon Blake-Wilson. Weak-
nesses in Shared RSA Key Generation Protocols. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinform-
atics), volume 1746, pages 300–306. Springer, Berlin, Heidelberg, December 1999. URL:
http://link.springer.com/10.1007/3-540-46665-7_34.

7 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 10991 LNCS, pages 757–788, 2018. URL:
https://eprint.iacr.org/2018/601.pdf.

8 Dan Boneh and Matthew Franklin. Efficient generation of shared RSA Keys. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 1294(4):425–439, July 1997. doi:10.1007/BFb0052253.

9 Clifford Cocks. Split knowledge generation of RSA parameters. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 1355, pages 89–95, 1997. doi:10.1007/bfb0024452.

10 Cybernetica. Cryptographic Algorithms Lifecycle Report 2016. Technical report,
Cybernetica, 2016. URL: https://www.ria.ee/sites/default/files/content-editors/
publikatsioonid/cryptographic_algorithms_lifecycle_report_2016.pdf.

11 Ivan Damgård and Gert Læssøe Mikkelsen. Efficient, robust and constant-round distributed
RSA key generation. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 5978 LNCS:183–200, 2010.

Tokenomics 2020

https://eprint.iacr.org/2002/029.pdf
https://eprint.iacr.org/2002/029.pdf
https://doi.org/10.1007/s00221-007-1153-3
https://doi.org/10.1145/2840728.2840745
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
http://link.springer.com/10.1007/3-540-46665-7_34
https://eprint.iacr.org/2018/601.pdf
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1007/bfb0024452
https://www.ria.ee/sites/default/files/content-editors/publikatsioonid/cryptographic_algorithms_lifecycle_report_2016.pdf
https://www.ria.ee/sites/default/files/content-editors/publikatsioonid/cryptographic_algorithms_lifecycle_report_2016.pdf

9:14 Implementation Study of Two Verifiable Delay Functions

12 Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
11921 LNCS, pages 248–277, 2019. URL: https://defeo.lu/.

13 Vassil S. Dimitrov, Graham A. Jullien, and William C. Miller. Complexity and fast algorithms
for multiexponentiations. IEEE Transactions on Computers, 49(2):141–147, 2000. doi:
10.1109/12.833110.

14 Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs
of space. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 9216, pages 585–605, 2015. URL:
https://eprint.iacr.org/2013/796.pdf.

15 Ben Fisch, Joseph Bonneau, Nicola Greco, and Juan Benet. Scaling Proof-of-Replication for
Filecoin Mining. Technical report, Stanford University, 2018. URL: https://web.stanford.
edu/{~}bfisch/porep_short.pdf.

16 Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed
rsa key generation for semi-honest and malicious adversaries. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 10992 LNCS, pages 331–361. Springer Verlag, 2018.

17 C. K. Koc. High-speed RSA implementation. Technical report, RSA Laboratories, 1994. URL:
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf.

18 Arjen K. Lenstra and Benjamin Wesolowski. Trustworthy public randomness with sloth,
unicorn, and trx. International Journal of Applied Cryptography, 3(4):330–343, January 2017.
doi:10.1504/IJACT.2017.089354.

19 NIST. Recommendation for Key Management - Part 1: General. NIST Special Publication
800-57, Revision 3(July):1–147, January 2012. doi:10.6028/NIST.SP.800-57pt1r4.

20 K. Z. Pekmestzi. Complex number multipliers. IEE Proceedings E: Computers and Digital
Techniques, 136(1):70–75, 1989. doi:10.1049/ip-e.1989.0010.

21 Krzysztof Pietrzak. Simple verifiable delay functions. In Leibniz International Proceedings in
Informatics, LIPIcs, volume 124, 2019. doi:10.4230/LIPIcs.ITCS.2019.60.

22 Serguei Popov. The Tangle. Technical report, IOTA Foundation, 2018.
URL: https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/
45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf.

23 Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128–138, 1980. doi:10.1016/0022-314X(80)90084-0.

24 R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978. doi:
10.1145/359340.359342.

25 Victor Shoup. NTL - A Library for doing Number Theory, 2019. URL: https://www.shoup.
net/ntl/.

26 Benjamin Wesolowski. Efficient verifiable delay functions. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 11478 LNCS, pages 379–407, 2019. URL: https://eprint.iacr.org/
2018/623.pdf.

https://defeo.lu/
https://doi.org/10.1109/12.833110
https://doi.org/10.1109/12.833110
https://eprint.iacr.org/2013/796.pdf
https://web.stanford.edu/{~}bfisch/porep_short.pdf
https://web.stanford.edu/{~}bfisch/porep_short.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
https://doi.org/10.1504/IJACT.2017.089354
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.1049/ip-e.1989.0010
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://doi.org/10.1016/0022-314X(80)90084-0
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://www.shoup.net/ntl/
https://www.shoup.net/ntl/
https://eprint.iacr.org/2018/623.pdf
https://eprint.iacr.org/2018/623.pdf

Revisiting the Liquidity/Risk Trade-Off with Smart
Contracts
Vincent Danos
CNRS, École Normale Supérieure, PSL, INRIA, Paris, France
vincent.danos@ens.fr

Jean Krivine
CNRS, Université de Paris, France
jean.krivine@irif.fr

Julien Prat
CNRS, École Polytechnique, Paris, France
Julien.Prat@ensae.fr

Abstract
Real-time financial settlements constrain traders to have the cash on hand before they can enter a
trade [3]. This prevents short-selling and ultimately impedes liquidity. We propose a novel trading
protocol which relaxes the cash constraint, and manages chains of deferred payments. Traders can
buy without paying first, and can re-sell while still withholding payments. Trades naturally arrange
in chains which contract when deals are closed and extend when new ones open. Default risk is
handled by reversing trades.

In this short note we propose a class of novel financial instruments for zero-risk and zero-
collateral intermediation. The central idea is that bilateral trades can be chained into trade lines.
The ownership of an underlying asset becomes distributed among traders with positions in the trade
line. The trading protocol determines who ends up owning that asset and the overall payoffs of the
participants. Counterparty risk is avoided because the asset itself serves as a collateral for the entire
chain of trades. The protocol can be readily implemented as a smart contract on a blockchain.

Additional examples, proofs, protocol variants, and game-theoretic properties related to the
order-sensitivity of the games defined by trade lines can be found in the extended version of this
note [1]. Therein, one can also find the definition and game-theoretic analysis of standard trade-lines
with applications to trust-less zero-collateral intermediation.

2012 ACM Subject Classification Information systems → Online banking

Keywords and phrases Electronic trading, Smart contracts, Static analysis

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.10

Category Short Paper

1 Bilateral contracts

A bilateral contract between traders u, v is a set of clauses describing their time-dependent
payment and delivery obligations.

An atomic clause for x in {u, v} is a triple (a, b) in R+ ×R, where a ≥ 0 is the activation
payment, b the passive effect, and x is the active trader. The first component a specifies the
amount x needs to pay to trigger the clause. The second component b is the payment which
ensues, with the convention that b ≥ 0 if x receives the payment.

A constant clause is a disjunction of atomic ones ie an element of Pfin(R+ × R).
A clause is a finite piecewise-constant function from Z to Pfin(R+ × R).
Time corresponds to block number in a blockchain implementation.
The domain of a clause is |Θ| = {t | |Θ(t)| > 0}.
We write C ⊆ Z→ Pfin(R2

+) for the set of clauses.
We say a clause Θ is: deterministic, if |Θ(t)| ≤ 1; eventually defined if [M,+∞) ⊆ |Θ| for

some M . We write C0, Ce ⊂ C for the associated sets.
© Vincent Danos, Jean Krivine, and Julien Prat;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 10; pp. 10:1–10:5

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vincent.danos@ens.fr
mailto:jean.krivine@irif.fr
mailto:Julien.Prat@ensae.fr
https://doi.org/10.4230/OASIcs.Tokenomics.2020.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

10:2 Revisiting the Liquidity/Risk Trade-Off with Smart Contracts

Clauses can be merged using two operations: (Θ + Θ′)(t) = Θ(t) + Θ′(t) where the sum
on the right is taken pairwise {θi}+ {θ′j} = {θi + θ′j}; and (Θ ∨Θ′)(t) = Θ(t) ∪Θ′(t).

The triple (C,∨,+) is a commutative idempotent semi-ring, with sub-semi-ring the set
of eventually defined clauses (but not the deterministic ones C0). The domain map is a
semi-ring morphism from (C,∨,+) to (Pfin(Z),∪,∩).

A bilateral contract between u and v consists of a backward clause β for u, and a forward
clause φ for v. One can depict a contract as a game (Fig. 1). The forward/backward
distinction only makes sense when contracts are composed (see next Section).

A contract φ, β between u and v is said to be: exclusive if |φ| ∩ |β| = ∅; in an F -state
(B-state) if active payments requested by φ (β) have been made by v (u); idle if neither in a
B-state or an F -state; eventually-F (B) if φ (β) is eventually defined.

Notice that the game tree is not strictly speaking that of a sequential game [2]: the
availability of moves to either player is context-dependent and so are the payoffs; and moves
may (depending on the context) be available simultaneously to both players.

u
φvu−−−→
βuv

v
Bu|βuv

ww
Fv|φvu

''(
πB − ε
−πB

) (
−πF
πF − ε

)
Figure 1 A contract as a game: ε is the constant cost of a move (gas); πB (πF) is the aggregated

payoff to u (v); move Bu (Fv) is available in contexts where β (φ) holds.

A basic example is the standard bilateral contract with forward and backward clauses
φ(t) = t < Σ 7→ (a, 0), and β(t) = t ≥ ∆ 7→ (0, p). This means that v may buy u’s asset at
price a at any time t < Σ; while u may cancel the deal at any time t ≥ ∆ and be paid a
penalty p by v. One has |φ| = (−∞,Σ), |β| = [∆,+∞). Hence this contract is: eventually-B;
idle during the [Σ,∆) interval if Σ < ∆; and exclusive iff Σ ≤ ∆.

Absent the property of exclusivity, traders may move simultaneously. As a consequence, in
a blockchain implementation, outcomes may depend on the order in which moves are ordered
by the block-makers. A form of order-insensitivity can be achieved (see Supp. Inf. [1]).

2 Composite contracts

A tradeline is a non-empty list of composable contracts:

u1
φ1−−−→
β1

u2
φ2−−−→
β2

· · · un−1
φn−1−−−−−→
βn−1

un

u1 is called the origin and un the end of the trade line. If u1 = un, one says the trade line is
resolved. If, in a given context, no contract is in an F - or a B-state, one says the trade line
is irreducible; if every contract is in an F - or a B-state, one says the trade line is connected.

A trade line represents a game being played between the owners of its positions. We
distinguish two types of moves.

Contractions are moves whereby the owner of an active position acquires an adjacent
position. Below the active (acquired) position is in red (blue). Boundary cases where v is
the end of the trade line (indicated by the symbol v ·) are shown on the right. Payments

V. Danos, J. Krivine, and J. Prat 10:3

consequent to clauses being triggered are left implicit.

u
φ−−→
β

v
φ′−−→
β′

w
Fv===⇒
φ

v
φ+φ′−−−→
β∨β′

w

u
φ−−→
β

v
φ′−−→
β′

w
Bu==⇒
β

u
φ+φ′−−−→
β∨β′

w

u
φ−−→
β

v · Fv===⇒
φ

v ·

u
φ−−→
β

v · Bu==⇒
β

u ·

If the trade line fully resolves under contraction, the owner of the last remaining position is
now in full possession of the underlying asset.

The idea adding forward clauses is that the payment just made (or once promised) by v is
transferred onto w’s forward clause. The idea of taking the union of backward clauses is that
u is carrying over his original cancellation condition in the new contract with w. Specifically,
the new backward clause β ∨ β′ which ties in u and w is implied by β. This means that the
player triggering the B-move does not have to stop after the first contraction and can sweep
the entire trade line if she wishes to, for as long as β holds.

Let γ, γ′ be trade lines, and suppose γ contracts to γ′ under the rules above. The
following holds: (i) if γ is connected, so is γ′; (ii) if γ is exclusive, so is γ′; (iii) if all arcs in γ
are eventually-B or -F , so are the ones in γ′.

We can return to the standard contracts and compute their reductions. With simplified
and self-evident notations we get the following contraction rules:

u
Σ1, a1−−−−→
∆1, p1

v
Σ2, a2−−−−→
∆2, p2

w
Bu=====⇒

v→p1u
u

min(Σ1,Σ2), a1+a2−−−−−−−−−−−−→
∆1, p1∨∆2, p2

w for t ≥ ∆1

u
Σ1, a1−−−−→
∆1, p1

v
Σ2, a2−−−−→
∆2, p2

w
Fv=====⇒

v→a1u
v

min(Σ1,Σ2), a1+a2−−−−−−−−−−−−→
∆1, p1∨∆2, p2

w for t < Σ1

For t ≥ max(∆1,∆2) the trader with the backward clause will pick the highest of p1 or p2.

2.1 Extension
We also need a move to grow a trade line. Any trader at the end u of the trade line can
extend it using the sell rule Suv(φ, β) and append a new contract with clauses φ, β, thereby
adding a new position v to the game:

u · Suv(φ,β)======⇒ u
φ−−→
β

v ·

If extensions were not constrained to happen the end of the trade line, the owner of the
origin could introduce a new position u0 left of it:

u0
_−−−−−−−−−→

−∞<t 7→(0,a)
u1 −−−→ · · · −−−→ un

and sweep through the entire line by iterating Bu0 and collect an arbitrary fee a from
everyone. We show below that our design choices prevent such catastrophic events.

3 Soundness of the trade game

We establish now an upper bound on the expenses incurred by playing the game.
The simplify the derivation we assume deterministic clauses. Let γ be a trade line, and

let t be a time. We denote by < the positional ordering in γ. For any position i ∈ γ not at
the end of γ, we denote by φi(t), βi(t) the clauses where i is in backward position.

Tokenomics 2020

10:4 Revisiting the Liquidity/Risk Trade-Off with Smart Contracts

Payoffs at fixed time are specified by pairs of real numbers: φ1
i (t) ≥ 0 is the active

payment i’s Buyer makes to i to complete the deal; and φ2
i (t) is the (possibly negative)

passive payment from i to his Buyer which follows. When i’s Buyer plays that forward move,
i’s payoff is therefore: φ1

i (t) − φ2
i (t). We suppose henceforth that φ1

i (t) ≥ φ2
i (t), so that

a forward move is always profitable to the passive player. This constraint is stable under
contractions.

Likewise: β1
i (t) ≥ 0 is the active payment i needs to make to i’s Buyer to cancel the deal;

and β2
i (t) is the (possibly negative) passive payment from i’s Buyer to i which follows. When

i plays that backward move, i’s payoff is therefore: β2
i (t)− β1

i (t).
Fig. 2 summarises the situation. For Fv, Bv, v is the active trader; for Bu, Fw, v is passive

u

Fv

φ2(t)−φ1(t)

��
\\

Bu

β1(t)−β2(t)

v
��

Bv

β′2(t)−β′1(t)

Fw

φ′1(t)−φ′2(t)

BBw

Figure 2 Contractions which change the balance of v together with the subsequent payoffs.

and evicted by the move. Accordingly, from v’s viewpoint φ2(t)− φ1(t), and β′2(t)− β′1(t)
are the active payoffs, and β1(t)− β2(t), φ′1(t)− φ′2(t) the passive ones.

We define the leftward bounds (leaving out positions where payoffs are undefined):

β(v, t) = maxi<v(sups≥t(β2
i (s)− β1

i (s))) passive expense on a B-move
φ(v, t) =

∑
i<v sups≥t(φ1

i (s)− φ2
i (s)) active expense on an F -move

The idea is that β(v, t) is an upper bound for the expenses v may incur upon eviction by
a B-move, whichever is the trace followed. Likewise, φ(v, t) is an upper bound for the price
v will ever have to pay to acquire the underlying (by buying all left positions using a series
of F -moves). Both quantities depend only on contracts left of v in γ.

We define also the rightward bounds:

ηBv (t) = sups≥t(β1
v(s)− β2

v(s)) active expense on a B-move

The idea is that ηBv (t) upper bounds the active payment made by v on a B-move. This
bound assumes no trader is fool enough to pick an option worse than his original backward
clause. Here the control is local to v, because v’s β clause self-propagates under reduction.
Note that ηBv (t) ≤ 0 if v’s backward clause always specifies a profit for v. There is no need to
define a symmetric ηFv (t) to control for passive expenses on an F -move, as we have assumed
above that F -moves are always profitable to the Seller.

I Proposition 1 (max expenses). Let γ be a trade line, and v a position in γ. Along any
trace starting from γ where v plays no extension, v’s expenses are upper bounded by:

φ(v, t) + β(v, t) +NηBv (t)

with N the number of Bv moves played by v. If ηBv (t) ≤ 0, v’s expenses are upper bounded
by β(v, t) + φ(v, t).

V. Danos, J. Krivine, and J. Prat 10:5

To cope with traces where v extends the trade line, ie plays with moves of type Svw(βk, φk),
one can readily adapt ηBv (t) to also maximise over such moves k:

η̂Bv (t) = maxk sups≥t(β1
k(s)− β2

k(s))

If all these payments are Seller-positive, ie η̂Bv (t) ≤ 0, we can forget this additional term.
One can also show that the evolution of a trade line cannot lead to a solution where a

Seller receives less than the originally asked price for a forward as well as a backward move.

I Proposition 2 (Monotonicity). Let γ be a trade line, and v a position in γ: v’s forward
payoff (as Seller) is non-decreasing, and v’s backward payment is invariant.

Note that even if there are Buyers waiting to join, v’s forward payoff may never happen.
Suppose v faces a w who extends the tradeline with a forward-dead contract Swx(0, β), and
w never plays Fw. The only way out for v is to B-sweep the trade line entirely.

4 Aside on implementation

Trade lines and their evolution rules can be interpreted by a dedicated smart contract
connected to an external custodial contract to define the ownership of the assets traded in
the protocol. When the game starts, the owner of the asset transfers its property to an
account of the custodial contract which is controlled by the interpreter contract.

To implement passive payments which are essential to the protocol, one could forward
payment obligations to an external system managing the players’ debts. Prop. 1 gives a
solution for a trust-less implementation. Using the associated upper bounds, the contract can
statically compute the amount of cash a trader needs to stake in, upon joining. By asking
traders to fully provision potential expenses, one does not have to trust them to honour their
debts. Depending on specific time-dependencies, provisions can be partially returned as time
advances and provisions are re-evaluated. There is no such concern for active payments, as
these are payments which players have to make to change the state of the game.

When the trade line finally resolves, it remains for the interpreter contract to ask the
custodial contract to transfer the ownership of the asset to the owner of the one remaining
position in the game (which implies that the owner is known to the custodial contract).

5 Conclusion

We have defined a consistent trade protocol to manage chains of reversible bilateral contracts.
Its design derives entirely from a simple premise: the need for a theory of deferred payments
which allows one to postpone payments, and resell an asset one has not paid for yet. To do
this one has to keep somehow a memory of past transactions, and introduce mechanics to
revert some, as the need may occur. This leads to a protocol where chains of transactions
define the state of an open game; the evolution of which relies on the reversibility of the
component games.

References
1 Vincent Danos, Jean Krivine, and Julien Prat. Reversible and composable financial contracts,

2019. URL: http://www.di.ens.fr/~danos/tls.pdf.
2 Drew Fudenberg and Jean Tirole. Game theory, 1991. Cambridge, Massachusetts, 393(12):80,

1991.
3 Mariana Khapko and Marius Zoican. How fast should trades settle? Society for Financial

Studies (SFS) Cavalcade, 2017.

Tokenomics 2020

http://www.di.ens.fr/~danos/tls.pdf

Proof of Behavior
Paul-Marie Grollemund
Université Clermont Auvergne, LMBP UMR 6620, Aubière, France
paul_marie.grollemund@uca.fr

Pascal Lafourcade1

Université Clermont Auvergne, LIMOS UMR 6158, Aubière, France
https://sancy.iut-clermont.uca.fr/~lafourcade/
pascal.lafourcade@uca.fr

Kevin Thiry-Atighehchi
Université Clermont Auvergne, LIMOS UMR 6158, Aubière, France
kevin.atighehchi@uca.fr

Ariane Tichit
Université Clermont Auvergne, Cerdi UMR 6587, Clermont-Ferrand, France
ariane.tichit@uca.fr

Abstract
Our aim is to change the Proof of Work paradigm. Instead of wasting energy in dummy computations
with hash computations, we propose a new approach based on the behavior of the users. Our idea
is to design a mechanism that replaces the Proof of Work and that has a positive impact on the
world and a social impact on the behaviors of the citizens. For this, we introduce the notion of
Proof of Behavior. Based on this notion, we present a new cryptocurrency, called EcoMobiCoin, that
encourages the ecological behavior in the mobility of the citizens.

2012 ACM Subject Classification Security and privacy

Keywords and phrases Proof of behavior, Blockchain, Security

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.11

Category Short Paper

1 Introduction

Bitcoin [12] was the beginning of a digital revolution and it is also the birth of the blockchain
technology (see [3] for an overview). The security of this technology relies on the concept of
Proof of Work (PoW). In order to validate a transaction, a miner needs to produce a PoW.
In Bitcoin, a PoW is the computation of an objective of hash, which is finding a number
that satisfies an inequation. Finding this number requires to compute thousands of hash
functions. PoW is one of the main negative aspect of this technology since it is highly energy
consuming [13]. Moreover in the case of Bitcoin, the performed hash computations are really
useless. Our goal is to design an alternative to PoW, for this purpose we introduce the notion
of Proof of Behavior (PoB).

Contributions. We present the notion of PoB, the idea is to incentivize citizens to have
responsible behaviors instead of doing useless computations as in PoW. Our aim is to replace
PoW by PoB. We propose a first application to design a new cryptocurrency for the mobility,
called EcoMobiCoin for Ecological and Collaborative Mobility Coin. If you can prove that
you are biking or walking or using public transportation to go somewhere instead of using

1 Corresponding author

© Paul-Marie Grollemund, Pascal Lafourcade, Kevin Thiry-Atighehchi, and Ariane Tichit;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 11; pp. 11:1–11:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paul_marie.grollemund@uca.fr
https://orcid.org/0000-0002-4459-511X
https://sancy.iut-clermont.uca.fr/~lafourcade/
mailto:pascal.lafourcade@uca.fr
mailto:kevin.atighehchi@uca.fr
mailto:ariane.tichit@uca.fr
https://doi.org/10.4230/OASIcs.Tokenomics.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 Proof of Behavior

your car, or if you can prove that you are using your car with some passengers to go to
somewhere, you are generating a Proof of Behavior for eco-responsible mobility and then
creating new EcoMobiCoins. This approach aims at facilitating the energy transition that is
a key point of the next years.

Related Work. Many works aim at improving existing blockchains or cryptocurrencies
as for instance [2, 8, 9, 11, 5]. There are many works that use blockchain to develop new
applications as for instance online secure e-voting [7] or online secure e-auction [4] or even
proof of identity [10]. Moreover many cryptocurrencies have been designed after Bitcoin, as
for example Ethereum, PeerCoin, PrimeCoin etc. In [1], the authors proposed a classification
in 4 categories of the existing cryptocurrencies:
1. Scam: These are cryptocurrencies that are designed quickly, not secure and their only

goal is to convince people to invest money in these coins in order that the designers earn
some money. They are usual quickly identified by the community as scams and they
disappear.

2. Clone: These cryptocurrencies are just some clones of Bitcoin to particular purpose as
for instance PokerCoin for poker players.

3. New goal: Here the aim is to change the goal of the cryptocurrencies, for instance
PrimeCoin aims at discovering new Cunningham chains that are mathematical advances
in prime numbers. Two other examples are CureCoin or FoldingCoin that aim at using
the computation to solve medicine problems.

4. New consensus: The goals of such cryptocurrencies is to propose different consensus. The
first initiative was PeerCoin that introduces the notion of Proof of Stake. Some other
initiatives exist like SpaceMint [14] that introduces the Proof of Space or PermaCoin that
introduces the notion of Proof of retrievability.

Our concept of Proof of Behavior is clearly at the intersection of the two last categories.
We are proposing a new goal and at the same time a new paradigm. The closest existing
cryptocurrency to a PoB is SolarCoin2. The goal of SolarCoin is to “incentivize solar electricity
by rewarding the generators of solar electricity”. They reward solar energy producers with
blockchain-based digital tokens at the rate of 1 SolarCoin (SLR) per 1 MWh of solar energy
produced. More precisely, users produce solar energy and provide a proof of this production
to the SolarCoin Foundation that approves its behavior. Then users receive SolarCoins
and can use them. The experience of SolarCoin started in 2014 clearly shows that it is an
economic model that works.

Concerning our application to mobility, the closed project is MobiCoin presented in 2018
at the Mobile World Congress in Barcelona, Spain by Mercedes-Benz to reward conductors
that have an ecological drive3. They aim at collecting users data and rewarding some of them
with Mobicoins. Unfortunately in 2020, this project is not yet used and it is difficult to obtain
any information on its status. However our aim is different, since we reward collaborative
mobility and zero emission mobility like walking and biking.

Outline. We first explain the concept of Proof of Behavior in the next section. Then we
apply PoB to design EcoMobiCoin, before concluding.

2 https://solarcoin.org/
3 Visited the 18 January 2019,
https://www.ellulschranz.com/mercedes-benz-invested-blockchain-technology

https://solarcoin.org/
https://www.ellulschranz.com/mercedes-benz-invested-blockchain-technology

P.-M. Grollemund, P. Lafourcade, K. Thiry-Atighehchi, and A. Tichit 11:3

2 Proof of Behavior

We first present the idea of PoB, then the differences with PoW and finally the necessary
conditions for such system to work.

The idea of Proof of Behavior

The main idea behind PoB is that if users are doing some concrete actions in the real world
and they can provide a proof of their actions then these PoB are used to generate new coin.

This is clearly a comeback to the essence of the revolution launched by Bitcoin: a system
based on a decentralized, collaborative, distributed consensus to validate transactions and
create new coins. Moreover, the main innovation in PoB is that it is not consuming time
and energy to useless things.

Comparison

Comparing to the PoW the actions of the users in the real world allow everyone to participate
to the coin generation. It is not necessary to spend money in specialized material for mining,
as in Bitcoin, since it is user’s behavior that gives the power to mine coins. With this change
of paradigm everyone can decide to select which behavior he wants to have in order to
contribute to a global improvement of the society.

The main difference is that valid proofs of behavior are used to generate new coins. It
means that nothing is wasted, because PoB are positive actions for the society, so it does
not matter if they are realized but not used to generate coins. It is not necessary that the
behavior is more and more difficult according to the number of persons, as in Bitcoin where
the system adapts itself in order that only few transactions are validated every ten minutes.
This implies in Bitcoin that the cost of the transactions is more and more expensive, because
everyone wants to win the race to find the nonce to solve the objective of hash and because
the difficulty is increasing. In a proof of behavior any action can contribute to the generation
of new coins.

Conditions

In Bitcoin, the revolution comes with a main innovation: decentralization. It means that
central entities are not needed anymore to create currencies. It implies that everyone can
mine and not only the financial institutions can generate money. A necessary condition in
this system is that everyone can also verify the results of the computations of the miners
since everything is publicly distributed. The same mechanism is present in PoB: everything
is publicly verifiable and written in the blockchain.

The key point is to determine who has the right to write in the blockchain and how?
In PoB, this right is not given to miners that have a lot of computational resources as in
Bitcoin but it is, in some sense, shared between the three following actors:
User: Person who does some transactions by sending coins to someone.
ProofMaker: Person who realizes a PoB.
Verifier: Person who verifies the validity of PoB and the validity of transactions. Then he

writes in the blockchain the verified PoB and transactions.

To summarize, everyone can be a ProofMaker and generate PoB. Everyone can verify
the validity of some PoB and then uses these valid PoB to register on the blockchain some
valid transactions. To compare with Bitcoin where the miners perform the verification of the

Tokenomics 2020

11:4 Proof of Behavior

validity of the transactions and also the proof of work, we have the verifiers that only verify
the validity of the transactions and of the PoB. Moreover, the proof of work are done by the
ProofMaker by having positive behaviors.

Moreover we add the fact that a PoB has a validity period. We use the fact that a
behavior is something that is done at some precise time, then a PoB has a validity period of
few hours (for instance 24h) to be used by a verifier to generate new coins. We can also add
such constraints on the transactions, if a transaction is not written in the blockchain after
few hours (it can also be for instance 24h) then the transaction is removed from the pool of
transactions. Indeed this is implicitly done in Bitcoin. In this setting, in order to validate
a transaction, a verifier needs to have verified a proof of behavior and the validity of some
transactions.

Concerning the blockchain, we can imagine at least three possibilities:
Private: A consortium of partners like public transportation, cities, government or industrial

can just vote or validate the verified associations PoB and transactions.
Public: Every verifier can write in the blockchain, the longest chain having the highest

behavior score4 is the main chain. We also add the fact that all blocks written after 24h
in the main chain cannot be changed. This point limits the possibilities of fork.

Hybrid: A mix between public and private blockchain is also possible.

Each time a verifier writes a block, he creates one coin. It is important that this reward
remains a constant and depends neither on the transactions nor on the PoB. At the same
time, the owners of the PoB used by the verifier also receive one coin that is fairly split
between all PoB owners used by the verifier.

The concept of Proof of Behavior is clearly an important innovation toward a new
economical system where everyone is responsible of its acts.

3 Application: EcoMobiCoin

One of the first application of PoW is the design of a cryptocurrency to incentivize less
emission in the transportation. For this, the first task is to define what are the behaviors
that we want to promote. We identify four main behaviors: walking, biking, using public
transportation and carpooling.

For each situation a proof of behavior is a real GPS trace that can be collected using
a simple smartphone. For this we need a signature of the device that is unique. This is
necessary in order that a device can be identified and not be used in several traces at the
same time. The trace should also prove that the user was walking or biking or driving. For
this some statistical algorithms [6] are used to determine if a user’s GPS trace is a valid
trace of the following behaviors: walking, biking or driving. These algorithms are public and
used by verifiers to determine the trace validity. The verification is part of the work of the
verifier and then he can write to the blockchain.

Concerning the public transportation, the proof contains two GPS traces: one for the
user and for instance one for the tram line. Here other algorithms are used to prove that the
two traces are similar. Finally for the carpooling, a PoB also include several GPS traces. Of
course each proof of behavior is awarded by some EcoMobiCoins, so a PKI infrastructure is
used to ensure all the cryptographic mechanisms as in any blockchain.

4 This score depends of which behaviors the cryptocurrency wants to emphasize.

P.-M. Grollemund, P. Lafourcade, K. Thiry-Atighehchi, and A. Tichit 11:5

In comparison to other economic systems based on a cryptocurrency, PoB allows to define
a range of ways to generate coins. Cryptocurrencies as SolarCoin are focusing on only one
behavior or only one small subset of the society. On the opposite, a PoB-based cryptocurrency
is affordable to a large part of the population. As a consequence, an economic system based
on EcoMobiCoin is more robust and is likely to include a wider public embracing.

4 Conclusion

We change the paradigm of Proof of Work and we introduce the concept of Proof of Behavior.
This allows us to incentivize behaviors of users. We propose one first application for
transportation with the design of EcoMobiCoin. Many applications can be envisaged based
on the notion of Proof of Behavior. We can imagine several other applications in order to
reward good usages as soon as it is possible to construct a verifiable proof of behavior. In
each application it is important to design adapted cryptographic primitives in order to have
a sufficient security level in how the proofs of behavior are produced.

References

1 A. Tichit, P. Lafourcade, and V. Mazenod. Les monnaies virtuelles décentralisées sont-elles
des dispositifs d’avenir ? revue Interventions Economiques, 2017.

2 E. Anceaume, R. Ludinard, M. Potop-Butucaru, and F. Tronel. Bitcoin a Distributed Shared
Register. In 19th Intl. Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS), 2017.

3 J-G. Dumas, P. Lafourcade, A. Tichit, and S. Varette. Les blockchains en 50 Questions,
comprendre le fonctionnement et les enjeux de cette technologie innovante. Dunod, 2018.

4 P. Lafourcade, M. Nopere, J. Picot, D. Pizzuti, and E. Roudeix. Security analysis of
auctionity: a blockchain based e-auction. In 12th International Symposium on Foundations
and Practice of Security - Revised Selected Papers, FPS, 2019.

5 I. Abraham, G. G. Gueta, D. Malkhi, M. K. Reiter, and M. Yin. Hot-stuff the linear,
optimal-resilience, one-message BFT devil. CoRR, abs/1803.05069, 2018. arXiv:1803.05069.

6 P. C. Besse, B. Guillouet, J. Loubes, and F. Royer. Review and perspective for distance-based
clustering of vehicle trajectories. IEEE Transactions on Intelligent Transportation Systems,
17(11):3306–3317, November 2016. doi:10.1109/TITS.2016.2547641.

7 Marwa Chaieb, Mirko Koscina, Souheib Yousfi, P. Lafourcade, and Riadh Robbana. Dabsters:
a privacy preserving e-voting protocol for permissioned blockchain. In 16th International
Colloquium on Theoretical Aspects of Computing, ICTAC, 2019.

8 A. Durand, E. Anceaume, and R. Ludinard. STAKECUBE: Combining Sharding and Proof-
of-Stake to build Fork-free Secure Permissionless Distributed Ledgers. In 7th International
Conference, (NETYS), 2019. URL: https://hal.archives-ouvertes.fr/hal-02078072.

9 A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A Provably Secure Proof-of-
Stake Blockchain Protocol. In 37th Annual International Cryptology Conference, CRYPTO,
2017.

10 Marius Lombard-Platet and P. Lafourcade. Get-your-id: Decentralized proof of identity. In
12th International Symposium on Foundations and Practice of Security - Revised Selected
Papers, FPS, 2019.

11 S. Micali. ALGORAND: the efficient and democratic ledger. CoRR, abs/1607.01341, 2016.
arXiv:1607.01341.

12 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. URL: http://www.
bitcoin.org/bitcoin.pdf.

Tokenomics 2020

http://arxiv.org/abs/1803.05069
https://doi.org/10.1109/TITS.2016.2547641
https://hal.archives-ouvertes.fr/hal-02078072
http://arxiv.org/abs/1607.01341
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

11:6 Proof of Behavior

13 K.J. O’Dwyer and D. Malone. Bitcoin mining and its energy footprint. IET Conference
Proceedings, pages 280–285(5), 2014. URL: https://digital-library.theiet.org/content/
conferences/10.1049/cp.2014.0699.

14 Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joël Alwen, and Krzysztof Pietrzak.
Spacemint: A cryptocurrency based on proofs of space. In Financial Cryptography and Data
Security - 22nd International Conference, FC 2018, volume 10957, pages 480–499. Springer,
2018.

https://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0699
https://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0699

Blockguard: Adaptive Blockchain Security
Shishir Rai
Kent State University, OH, USA
srai@kent.edu

Kendric Hood
Kent State University, OH, USA
khood5@kent.edu

Mikhail Nesterenko
Kent State University, OH, USA
http://vega.cs.kent.edu/~mikhail/
mikhail@cs.kent.edu

Gokarna Sharma1

Kent State University, OH, USA
http://www.cs.kent.edu/~sharma/
sharma@cs.kent.edu

Abstract
We change the security of blockchain transactions by varying the size of consensus committees. To
improve performance, such committees operate concurrently. We present two algorithms that allow
adaptive security by forming concurrent variable size consensus committees on demand. One is based
on a single joint blockchain, the other is based on separate sharded blockchains. For in-committee
consensus, we implement synchronous Byzantine fault tolerance algorithm (BFT), asynchronous
BFT and proof-of-work consensus. We evaluate the performance of our adaptive security algorithms.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computing
methodologies → Distributed algorithms; Networks → Security protocols; Security and privacy →
Distributed systems security

Keywords and phrases Blockchain, Consensus, Security, Distributed algorithms

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.12

Category Short Paper

Related Version A full version of the paper is on arXiv: https://arxiv.org/abs/1907.13232.

Supplementary Material The source code is available on GitHub at https://github.com/khood5/
distributed-consensus-abstract-simulator.git.

1 Introduction

A secure distributed ledger, blockchain allows a decentralized network of peers to register
a sequence of transactions despite potentially malicious actions of a minority of peers.
Blockchain technology is poised to revolutionize a variety of fields: from currency and
payment systems that are impervious to state and corporate manipulation, to automatically
enforced contracts, to internet-of-things massive data recording.

In this paper, we state the problem of adaptive security and propose two efficient
algorithms that solve it. We evaluate their performance with major consensus algorithms:
PBFT, SBFT and proof-of-work. We measure their throughput, transaction waiting time
and resistance to Byzantine peer corruption. Our results suggest that the adaptive security

1 Corresponding author.

© Shishir Rai, Kendric Hood, Mikhail Nesterenko, and Gokarna Sharma;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 12; pp. 12:1–12:5

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:srai@kent.edu
mailto:khood5@kent.edu
http://vega.cs.kent.edu/~mikhail/
mailto:mikhail@cs.kent.edu
https://orcid.org/0000-0002-4930-4609
http://www.cs.kent.edu/~sharma/
mailto:sharma@cs.kent.edu
https://doi.org/10.4230/OASIcs.Tokenomics.2020.12
https://arxiv.org/abs/1907.13232
https://github.com/khood5/distributed-consensus-abstract-simulator.git
https://github.com/khood5/distributed-consensus-abstract-simulator.git
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

12:2 Blockguard: Adaptive Blockchain Security

provides an effective trade-off between network performance and security without significant
increase in network complexity or major architectural modifications. Thus, it should be
adopted by current blockchain networks.

2 Definitions and Committee Consensus Algorithms

A set of n peer processes (or peers) forms a network to maintain the blockchain. The
blockchain is a sequence of blocks or transactions. We use the terms interchangeably, i.e.
we assume that a block contains a single transaction. A transaction is a unit of blockchain
recording. Each subsequent transaction is cryptographically linked to the previous one. The
first transaction in the blockchain is the genesis transaction. Peers communicate through
broadcasts. Message delivery is FIFO. There is no message loss. Messages cannot be forged.
Peers are either honest or Byzantine. A set of peers that cooperate to approve a transaction
despite actions of Byzantine peers is a consensus committee.

Sharding. A (recording) group is a set of processes that maintain a single blockchain. There
are as many groups as there are separate blockchains. In case of sharding, a peer in the
consensus committee that approves a certain transaction in a blockchain does not necessarily
belong to the group that records it. However, a peer may belong to only one recording group
and only one consensus committee at a time.

PBFT and SBFT. In PBFT [2] The committee of peers elect the leader. The leader runs
consensus on every transaction. It initiates several message exchanges with other committee
peers. A non-leader Byzantine peer may delay messages or send incorrect messages. A
Byzantine leader may temporarily block the consensus by sending different messages to
different peers or not sending messages altogether. In either case, the honest peers discover
the Byzantine leader and replace it by forcing a view change. PBFT is guaranteed to
withstand up to f < n/3 Byzantine peers regardless of the message propagation delay. The
operation of SBFT [1] is similar to PBFT. This algorithm relies on at least one honest peer
confirming the transaction. However, it assumes that there is a bound on communication
delay between honest peers. If a message is not received after a certain delay, it is guaranteed
never to arrive. Thus, the algorithm has to delay to ascertain this lack of message receipt.
In practice this may make SBFT slower. However, it has higher resilience threshold. It can
tolerate up to f < n/2 Byzantine peers.

PoW. We implement proof-of-work consensus similar to Nakamoto [3]. To attach a new
transaction to the blockchain, a peer mines the transaction by solving a computationally
intensive task that links the new and previous transaction. Several peers may mine transac-
tions concurrently. This is a fork in the blockchain. A branch of a fork may be extended
by the addition of mined transactions on top of the current block. The shorter branch is
discarded. PoW consensus operates correctly provided that the computational power of
honest peers exceeds that of Byzantine peers. If peers have the same computational power,
PoW consensus tolerates up to f < n/2 Byzantine peers.

S. Rai, K. Hood, M. Nesterenko, and G. Sharma 12:3

3 The Adaptive Security Problem and Solutions

The problem. The Adaptive Security Problem requires, as a solution, an adaptive security
algorithm, to assign committees to the transactions such that each committee satisfies the
transaction security level. We consider an adaptive security algorithm that selects appropriate
size committees and processes transactions with as much parallelism as possible. We present
two such algorithms: Composite Blockguard and Dynamic Blockguard.

Composite Blockguard adaptive security algorithm. In this algorithm, peers are divided
into storage groups maintaining independent blockchains. The algorithm maintains a list
of idle groups and pending transactions. Once a new transaction arrives or a consensus
committee is done, Composite Blockguard finds appropriate number of available groups,
forms a consensus committee to process the next pending transaction and dispatches the
transaction. If not enough idle groups are available, the pending transactions wait.

Dynamic Blockguard adaptive security algorithm. This algorithm has a single blockchain
and thus a single recording group. A consensus committee is selected out of this group of
peers. Multiple consensus committees may operate concurrently if their members do not
intersect. This means that the committees have to concurrently write to the same blockchain.
To ensure the integrity of the blockchain, the computation proceeds by alternating two stages:
consensus stage and recording stage. In the consensus stage, committees agree on blocks to
be written to the blockchain. Every committee must reach consensus before any committee
may proceed to the next stage. In the recording stage, each committee broadcasts the
transaction to the group maintaining the blockchain. That is, they broadcast it to the whole
network. Each written transaction is cryptographically linked to all the written transaction
in the previous recording stage. This way, the resultant blockchain is a series-parallel graph.
Committee selection window is the set of unique peers that published in the blockchain most
recently. Committee peers are picked at random from the committee selection window.

4 Performance Evaluation

Setup. We evaluate the performance of Composite and Dynamic Blockguard using abstract
simulation. The behavior of each algorithm is represented as a sequence of rounds. In every
round, each peer may receive a single new message, do local computation and send messages
to other peers.

Byzantine peers’ goal is to successfully commit a fraudulent transaction to the blockchain,
we model this as follows. A committee is reliable if the number of Byzantine peers in it does
not exceed its tolerance threshold, defeated otherwise. The tolerance threshold is 1/3 for
PBFT and 1/2 for SBFT and PoW. Defeated committees commit only fraudulent transactions
to the blockchain, and reliable committees never commit fraudulent transactions. Byzantine
leaders propose only fraudulent transactions. If a fraudulent transaction is proposed in a
reliable committee then a view change occurs. This repeats until a non-byzantine leader is
found. In PoW, if a Byzantine peer is the first to mine in a reliable committee then nothing
is recorded and mining restarts.

Experiment parameters and evaluation metrics. Unless stated otherwise, in the below
experiments, the parameters are set as follows. The fraction of Byzantine faults is n/10.
The number of peers in the network is 1024. There are 1000 rounds in a computation. Each
data point is the average of 10 computations. A new transaction is generated every two

Tokenomics 2020

12:4 Blockguard: Adaptive Blockchain Security

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
h
ro

u
g
h
p
u
t,
 t
ra

n
s
a
c
ti
o
n
s
 p

e
r

ro
u
n
d

Delay, rounds

PBFT
SBFT
PoW

(a) Throughput, Composite Blockguard, varying delay

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
h
ro

u
g
h
p
u
t,
 t
ra

n
s
a
c
ti
o
n
s
 p

e
r

ro
u
n
d

Delay, rounds

PBFT
SBFT
PoW

(b) Throughput, Dynamic Blockguard, varying delay

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
h
ro

u
g
h
p
u
t,
 t
ra

n
s
a
c
ti
o
n
s
 p

e
r

ro
u
n
d

Byzantine, fraction

PBFT
SBFT
PoW

(c) Throughput, Composite Blockguard, varying Byz-
antine fraction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
h
ro

u
g
h
p
u
t,
 t
ra

n
s
a
c
ti
o
n
s
 p

e
r

ro
u
n
d

Byzantine fraction

PBFT
SBFT
PoW

(d) Throughput, Dynamic Blockguard, varying Byz-
antine fraction

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
a
it
in

g
 t
im

e
,
ro

u
n
d
s

Delay, rounds

PBFT
SBFT
PoW

(e) Waiting time, Composite Blockguard, varying delay

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
a
it
in

g
 t
im

e
,
ro

u
n
d
s

Delay, rounds

PBFT
SBFT
PoW

(f) Waiting time, Dynamic Blockguard, varying delay

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

W
a
it
in

g
 t
im

e
,
ro

u
n
d
s

Byzantine fraction

PBFT
SBFT
PoW

(g) Waiting time, Composite Blockguard, varying Byz-
antine fraction

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

W
a
it
in

g
 t
im

e
,
ro

u
n
d
s

Byzantine fraction

PBFT
SBFT
PoW

(h) Waiting time, Dynamic Blockguard, varying Byz-
antine fraction

Figure 1 Performance of Blockguard adaptive security algorithms.

S. Rai, K. Hood, M. Nesterenko, and G. Sharma 12:5

rounds. We have 5 security levels. The highest security level is the 5-th level which contains
the whole network. Each lower level contains half of the peers of the higher level. We use
geometric distribution to select the security level of newly generated transaction. In PoW,
we use binomial distribution to determine the number of rounds it takes the peers to mine a
transaction. The mode, i.e. most frequently occurring value, is 5 and variance 2.5. We vary
maximum message delay and the fraction of Byzantine peers in the network. We consider
a transaction approval as a consensus. We compute the following metrics. Throughput is
the number of consensuses per round. Consensuses of defeated committees are not counted.
(Transaction) waiting time is computed as follows. For coordinated consensus algorithms, i.e.
PBFT and SBFT, it is the number of rounds from the moment the transaction is generated
till the first peer determines that the transaction is committed. For PoW, it is the time for
this transaction to be mined. The waiting time for transactions of defeated committees is
counted.

Algorithm performance experiments. The results of the performance evaluation of the
adaptive security algorithms are shown in Figure 1. Figures 1a and 1b demonstrate how
throughput depends on the network delay for Composite and Dynamic Blockguard respectively.
As network delay increases, the throughput declines. However, different consensus committees
react to this increase differently. PBFT has the best performance and lowest decline since the
committees just wait for the actual messages to arrive. SBFT exhibits the most sensitivity
to the network delay. The reason is that SBFT has to wait for the maximum delay to
determine that the message is not coming. Let us discuss Figures 1c and 1d. It shows
that the performance of Composite and Dynamic Blockguard decreases as the fraction of
Byzantine peers in the network increase. This is due to Byzantine peers slowing down the
consensus algorithms. PBFT suffers the most since its tolerance threshold is only a third of
the peers.

Figures 1e and 1f show the dependency of transaction waiting time on network delay.
As expected, the waiting time increases with delay. SBFT is the most vulnerable to this
increase since it has to wait for maximum delay time. Figures 1g and 1h show how waiting
time varies with the fraction of Byzantine peers. Let us explain the trends in the data. As
the consensus committee approaches its resiliency threshold, the number of view changes or
repeated transaction mining increases which increases the transaction waiting time. If the
fraction is away from this threshold, the committees are either reliable or defeated. In either
case the waiting time is relatively low. Thus, there is a peak near n/3 for PBFT and near
n/5 for SBFT and PoW. This trend is less pronounced in Dynamic Blockguard since it is
masked by synchronization across consensus committees in the same stage.

The results of our experiments indicate that both Composite and Dynamic blackguard
algorithm provide adaptive security with a trade-off between performance and security
parameters.

References
1 Ittai Abraham, Srinivas Devadas, Kartik Nayak, and Ling Ren. Brief announcement: Practical

synchronous byzantine consensus. In DISC, pages 41:1–41:4, 2017. doi:10.4230/LIPIcs.DISC.
2017.41.

2 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398–461, November 2002. doi:10.1145/571637.571640.

3 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,”
http://bitcoin.org/bitcoin.pdf, 2008.

Tokenomics 2020

https://doi.org/10.4230/LIPIcs.DISC.2017.41
https://doi.org/10.4230/LIPIcs.DISC.2017.41
https://doi.org/10.1145/571637.571640

Welcome to the Jungle: A Reference Model for
Blockchain, DLT and Smart-Contracts
Julien Hatin
Orange Labs, 42 rue des Coutures, Caen, France

Emmanuel Bertin
Orange Labs, 42 rue des Coutures, Caen, France

Baptiste Hemery
Orange Labs, 42 rue des Coutures, Caen, France

Nour El Madhoun
ISEP, 28 rue Notre Dame des Champs, Paris, France

Abstract
Blockchain technology has gained increasing attention from research and industry over the recent
years. This interest is mainly due to its core property that allows users to perform transactions
without a Trusted Third Party (TTP), while offering a transparent and fully protected tracking of
these transactions. However, there is a lack of reference models to describe and compare various
Blockchain technologies, leading to some confusion between different kinds of solutions. We propose
in this paper a reference model aiming to assess and compare different kind of Blockchain-based
ecosystems, including Decentralized Applications (DApp).

2012 ACM Subject Classification General and reference → Surveys and overviews; Computer
systems organization → Distributed architectures

Keywords and phrases Blockchain, DLT, Smart-Contracts

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.13

Category Short Paper

1 Introduction

Starting from the Bitcoin application ten years ago, Blockchain and Distributed Ledger
Technologies (DLT) have since considerably expanded in both industry and academic com-
munities, leading to a very fragmented and somehow puzzling landscape. In this context,
the aim of this paper is to define a reference model for Blockchain and DLT stakeholders, to
properly characterize various ecosystems and use-cases, especially in the case of distributed
applications. While existing modeling works have focused either on the engineering of DLT
solutions, or on the business relationships between the stakeholders, we intend to propose a
model addressing the interactions between these both levels. This model may then be used
as a kind of “traveler’s guide” for a Blockchain journey, enabling to better model needs and
possible solutions.

2 State of the Art and Methodology

In the state of the art, few papers address the question of modelling DLT. Most research
works in this field survey the Blockchain technology and its application use cases while
introducing some high-level modelling on how transactions are performed [3, 12, 13, 14]. [12]
is a typical example of this category of articles, providing a synthesis on Blockchain properties
and a typology of application domains. However, some papers address more explicitly the
question of modeling Blockchain and DLT. [5] introduces for example a comprehensive UML-

© Julien Hatin, Emmanuel Bertin, Baptiste Hemery, and Nour El Madhoun;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 13; pp. 13:1–13:5

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3923-1829
https://doi.org/10.4230/OASIcs.Tokenomics.2020.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Welcome to the Jungle

based Blockchain ontology, based on a study on how the Blockchain technology operates
(transactions, blocks, etc.). However, such work remains focused on the theoretical Blockchain
operations, and not on existing Blockchain or DLT solutions.

To fill this research gap, we have chosen to apply an empirical approach rather than
starting from a theoretical study on the way Blockchain technology operates. To reach this
target, we selected nine typical DLT solutions and studied their architecture, focusing on
both similarities and differences. This choice of these nine DLT solutions is based on the
reputation and usage, combined with a will to consider solutions with different architectures.
We also focused not only on fundamentals of Blockchain (i.e. mining blocks to build a
distributed ledger), but also on their usages with dApps (distributed applications) and smart
contracts. However, we acknowledge that this choice of nine solutions might include some
bias, due to our knowledge and practice of these technologies. This constitutes a limit of our
work that we intend to address in our future work by extending the scope of the surveyed
solutions.

3 Reference Model

DLT are not only bringing technical changes, but also changes in the actor model and in the
value chain. This is precisely what we intend to capture in this article. Figure 1 details our
reference model of the actors building a Blockchain ecosystem.

Figure 1 Actor model of DLT.

More precisely, we identified 6 different roles. The DLT Code Owner role is assigned to
the company or organization that develops and maintains the original source code. Trust in
the Core Code is essential, as the whole security of the blockchain network depends on it.
Three elements are produced by the actor playing this role:

The protocol that enable to issue, exchange and validates blocks and executes the various
decentralized application.
The low-level assembly-like language of dApp.
The virtual machine that is able to execute it.

To run a decentralized application, a network of peers is needed. The members of this
network are the blockchain nodes. A node has access to the ledger, can execute transaction
and DApp on the blockchain.

J. Hatin, E. Bertin, B. Hemery, and N. E. Madhoun 13:3

To build concrete application, a set of tools is mandatory. They are provided by the DLT
Utility Provider. Those tools consist of a human usable high-level language (i.e. C++ for
EOS or solidity for Ethereum) and of the tools to compile it. Those mandatory tools are
needed to build concrete dApp.

Using tools from the DLT Utility Provider, a DApp Owner can develop a new decentralized
application. The compiled code is then published on the DLT by the DApp Owner. In
blockchain architecture, the code is indeed not hosted by a central server. Instead the code is
published in a network by the DApp Owner, and the storage is shared by every nodes of this
network. The publication and the deployment of a decentralized application in this network
can be done freely (i.e. EOS) or with fees (i.e. Ethereum or NEO).

A DApp Consumer is the end user of the decentralized application. It can execute
function and read the result. Moreover, a DApp consumer is not necessarily a person or an
organization but can also be another DApp. The function execution can be free, or with fees
paid either by the DApp Consumer or the DApp Owner.

A Validator Instance is a key role in the blockchain systems: it validates the transaction.
Depending on the platform this could be using a proof of stakes or a proof of work or even
another consensus algorithm. The DLT Code Owner defines the consensus protocol and
technical framework used by the validators, as well as potential incentives and rewarding
rules. A Validator Instance is characterized by its computing power, in the case of Proof of
Work mechanisms.

Finally, the DApp is also a part of the blockchain, holding the bytecode of the application.
It is depending on the existence of Validator Instances to be published in the blockchain and
to able to perform transactions.

At the end of this article, table 1 provides an extensive comparison between the surveyed
DLT solutions according to the proposed role model.

4 Discussion and Application to existing DLT

The DLT code owner of any DApps-enabling blockchain is always endorsed by a single
company for permissioned blockchains, or by a foundation for permissionless blockchains (cf
Table 1). However, this entity is usually working with agile management process to include
new features in the core code, e.g. the Lisk Improvement Proposition and the Ethereum
Improvement Proposition. In addition, the core code is usually open source. Trusting the
protocol and the low-level features is indeed required to enable trust between actors. An
exception is Libra, which is permissioned, but managed by an association.

Another difference between the various DLT Code Owners lies in their level of control
over their technical assets. We can identify here a first organizational strategy that aims at
controlling the network protocol and leaving the application development and deployment to
the DApp owners in association with their partners. In this category we find Libra, Ethereum,
EOS, Lisk, and Hyperledger. Alternatively, other companies rely on existing open-source
DLT (that they do not control) to build their solution on top of it. We can cite here Quorum,
Monax, Counterparty. This model is usually associated with a tighter control on DApps
owners.

We can also distinguish solutions by looking at their openness strategy. Two approaches
exist here: the consortium approach and the free access approach. The main public blockchain
that can run DApps as overviewed in this paper are Ethereum, Eos, Counterparty and Lisk.
Those blockchains are open to any DApp owner. Oppositely, some actors have chosen to be
selective on who can participate as they address a specific vertical such as Monax or Quorum.

Tokenomics 2020

13:4 Welcome to the Jungle

Hyperledger have chosen a different approach by offering to its customers a solution to
deploy their own consortium with their own partners. This can be a well-suited solution to
construct quickly a blockchain environment. But this does not enable to open this network
to anybody or to switch to a free access model. Facebook have chosen here to develop its
own solution, which is very specific, because it starts as a permissioned network but aims to
become a free access network.

5 Conclusion and perspectives

The proposed reference model is designed as a tool for helping practitioners (e.g., business
managers and architects) to assess their choices in terms of roles and business models for
designing DApps. It is also designed as a tool for researchers to ground studies on the value-
chain of DLT and DApps, e.g. by simulating the behavior of the various actors according to
different incentives

Our perspective is to use a multi-agent model, relying on the roles described in the model,
to have a better comprehension of these actors’ behaviors – in a context where DApps owners,
validator instances and DApps consumers are all evolving in the jungle of competitive and
often incompatible DLT solutions.

References
1 Block.one. Eos white paper, 2018. URL: https://github.com/EOSIO/Documentation/blob/

master/TechnicalWhitePaper.md.
2 Vitalik Buterin et al. Ethereum white paper, 2013. URL: https://ethereum.org/

whitepaper/.
3 Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart contracts for the

internet of things. Ieee Access, 4:2292–2303, 2016. doi:10.1109/ACCESS.2016.2566339.
4 CounterpatyXCP. Counterpary documentation. URL: https://counterparty.io/docs/.
5 Joost de Kruijff and Hans Weigand. Understanding the blockchain using enterprise ontology.

In International Conference on Advanced Information Systems Engineering, pages 29–43.
Springer, 2017. doi:10.1007/978-3-319-59536-8_3.

6 Lisk Foundation. Lisk documentation. URL: https://lisk.io/documentation/lisk-sdk/
index.html.

7 The Hyperledger White Paper Working Group. Hyperledger white papers. URL: https:
//www.hyperledger.org/learn/white-papers.

8 Libra Association Members. Libra white paper v2.0, 2020. URL: https://libra.org/en-US/
white-paper/.

9 Monax.io. Monax documentation. URL: https://docs.monax.io/.
10 JP Morgan. Quorum wiki. URL: https://github.com/jpmorganchase/quorum/wiki.
11 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot,

2019.
12 Deepak Puthal, Nisha Malik, Saraju P Mohanty, Elias Kougianos, and Chi Yang. The block-

chain as a decentralized security framework [future directions]. IEEE Consumer Electronics
Magazine, 7(2):18–21, 2018. doi:10.1109/MCE.2017.2776459.

13 Horst Treiblmaier and Roman Beck. Business Transformation through Blockchain. Springer,
2019.

14 Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang. Blockchain
challenges and opportunities: A survey. International Journal of Web and Grid Services,
14(4):352–375, 2018. doi:10.1504/IJWGS.2018.10016848.

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://ethereum.org/whitepaper/
https://ethereum.org/whitepaper/
https://doi.org/10.1109/ACCESS.2016.2566339
https://counterparty.io/docs/
https://doi.org/10.1007/978-3-319-59536-8_3
https://lisk.io/documentation/lisk-sdk/index.html
https://lisk.io/documentation/lisk-sdk/index.html
https://www.hyperledger.org/learn/white-papers
https://www.hyperledger.org/learn/white-papers
https://libra.org/en-US/white-paper/
https://libra.org/en-US/white-paper/
https://docs.monax.io/
https://github.com/jpmorganchase/quorum/wiki
https://doi.org/10.1109/MCE.2017.2776459
https://doi.org/10.1504/IJWGS.2018.10016848

J. Hatin, E. Bertin, B. Hemery, and N. E. Madhoun 13:5

Ta
bl
e
1
C
om

pa
ris

on
of

st
ud

ie
d
D
LT

.

B
lo
ck
ch
ai
n

D
LT

co
de

ow
ne

r
D
LT

ut
ili
ty

pr
ov
id
er

D
ev
el
op

in
g

la
ng

ua
ge

D
A
pp

ow
ne

r
D
A
pp

co
ns
um

er
V
al
id
at
or

In
-

st
an

ce

B
itc

oi
n[
11
]

B
itc

oi
n
Fo

un
da

tio
n

B
itc

oi
n
Fo

un
da

tio
n

Sc
rip

t
an

yo
ne

an
yo

ne
B
it
co
in

m
in
er
s

E
ht
er
eu

m
[2
]

E
th
er
eu

m
Fo

un
da

-
tio

n
an

yo
ne

so
lid

ity
et
he

r
ho

ld
er

et
he

r
ho

ld
er

E
th
er
eu

m
m
in
er
s

Q
uo

ru
m
[1
0]

E
th
er
eu

m
Fo

un
da

-
tio

n,
JP

M
or
ga
n

an
yo

ne
so
lid

ity
an

yo
ne

w
ith

ac
ce
ss

to
a
pe

rm
is
si
on

ed
no

de
an

yo
ne

w
ith

ac
ce
ss

to
a
pe

rm
is
si
on

ed
no

de
pe

rm
iss

io
ne

d
no

de
C
ou

nt
er
pa

rt
y[
4]

B
itc

oi
n
Fo

un
da

tio
n

C
ou

nt
er
pa

ry
so
lid

ity
an

yo
ne

an
yo

ne
B
it
co
in

m
in
er
s

E
O
S[
1]

B
lo
ck

O
ne

an
yo

ne
C
+
+

to
ke
n
ho

ld
er

an
yo

ne
ap

pr
ov
ed

bl
oc
k
pr
od

u-
ce
r,

el
ec
te
d

by
to
ke
n

ho
ld
er

Li
br
a[
8]

Li
br
a
as
so
ci
at
io
n

Li
br
a
as
so
ci
at
io
n

M
ov
e

A
ss
oc
ia
tio

n
m
em

be
r

Li
br
a
ho

ld
er

A
ss
oc
ia
ti
on

m
em

be
r

M
on

ax
[9
]

T
he

Li
nu

x
Fo

un
da

-
tio

n
T
he

Li
nu

x
Fo

un
da

-
tio

n
so
lid

ity
,

G
ra
ph

ic
al

flo
w

A
ny

ac
to
r
w
ith

in
th
e

M
on

ax
sy
st
em

A
ny

ac
to
r
w
ith

in
th
e

M
on

ax
sy
st
em

M
on

ax
affi

li-
at
es

Li
sk
[6
]

Li
sk

Fo
un

da
tio

n
Li
sk

Fo
un

da
tio

n
Ja
va
sc
rip

t
an

yo
ne

an
yo

ne
10

1
ac
ti
ve

de
le
ga
te
s

H
yp

er
le
dg

er
[7
]

T
he

Li
nu

x
Fo

un
da

-
tio

n
T
he

Li
nu

x
Fo

un
da

-
tio

n
C
+
+
,s

ol
id
ity

A
ny

ac
to
r
w
ith

in
th
e

sy
st
em

A
ny

on
e

w
it
hi
n

th
e

sy
st
em

A
ny

ac
to
r

Tokenomics 2020

	p000-Frontmatter
	Preface
	Tokenomics 2020 Organization

	p001-Tirole
	p002-Abraham
	p003-Zakian
	p004-Amoussou-Guenou
	Introduction
	Related Work
	System Model
	Committee-based Blockchains
	Fairness of Committee-based Blockchains
	Selection Mechanism
	Definition and Fairness of Selection Mechanisms
	Examples of Selection Mechanisms

	Reward Mechanism
	Definition of Reward Mechanism
	Fairness of Reward Mechanism

	Numerical Examples
	Conclusions and Future Works

	p005-Bracciali
	Introduction
	Preliminaries
	Opinions and Opinion Profiles
	Byzantine Trust Networks
	Validation and Safety

	(De)centralisation and (In)tractability
	Safety Implies Centralization in Uniform QBTNs
	Safety and Quorum Intersection in BTNs
	The Intractability of Maintaining Quorum Intersection

	Quantifying Influence on Consensus in BTNs
	Influence Matrices
	Limit Influence
	Limit Influence in Ripple and Stellar

	Conclusions
	Technical appendix
	Proofs of Section 2
	Lemma 12
	Lemma 14
	Lemma 15
	Theorem 20
	Theorem 21
	Theorem 22

	Proofs of Section 4
	Theorem 25

	p006-Canidio
	Introduction
	Preliminary notions
	Program semantics
	Hoare logics

	VeriOSS
	Workflow overview
	Bug specification
	Challenge-response interaction
	Remote debugging
	Challenge generation
	Smart contracts and blockchain

	Incentives
	Discussion
	Implementation details
	Threat model
	Future extension
	Limitations

	Related work
	Remote attestation
	Remote debugging
	Information flow
	Secure multi-party computation
	Information sharing

	Conclusion

	p007-Nester
	Introduction
	Monoidal Categories as Resource Theories
	Resource Theories
	How to Read Equality

	String Diagrams for Ownership
	Ownership and Collection Management
	Change of Ownership

	Categorical Semantics
	Interpreting String Diagrams with Ownership
	A Simple Example

	Conclusions and Future Work

	p008-Penzkofer
	Introduction
	The IOTA protocol
	The Parasite Chain attack
	Contributions of this paper

	Model for the Number of Approvers
	Uniform Random Tip Selection
	Unbiased Random Walk
	Biased Random Walk

	Parasite Chain detection
	Random walk detection
	Future cone detection
	Final remarks

	Conclusion

	p009-Attias
	Introduction
	Related work
	RSA environments
	Efficient VDF - Wesolowski
	Setup
	Evaluation
	Proof
	Verification
	Overhead on the network

	Simple VDF - Pietrzak
	Setup
	Evaluation
	Proof
	Verification

	Dimitrov's multiexponentiation

	Simulation results
	Evaluation time analysis
	Proof time analysis
	Verification time analysis

	VDF optimizations
	Techniques used
	Using strings
	Using powers of 4
	Using chunked numbers
	Using chained lists

	Multiexponentiation performances
	Exponentiation with constant radix in Pietrzak VDF

	Discussion
	Comparison between Pietrzak and Wesolowski VDFs
	The RSA modulus
	Comparison with Proof of Work

	Conclusion

	p010-Danos
	Bilateral contracts
	Composite contracts
	Extension

	Soundness of the trade game
	Aside on implementation
	Conclusion

	p011-Grollemund
	Introduction
	Proof of Behavior
	Application: EcoMobiCoin
	Conclusion

	p012-Rai
	Introduction
	Definitions and Committee Consensus Algorithms
	The Adaptive Security Problem and Solutions
	Performance Evaluation

	p013-Hatin
	Introduction
	State of the Art and Methodology
	Reference Model
	Discussion and Application to existing DLT
	Conclusion and perspectives

