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Abstract. In the recent years, many research lines on Functional Encryption (FE) have
been suggested and studied regarding the functionality, security, or e�ciency. These
studies include quadratic FE, multi-client FE, function-hiding FE, dynamic FE and
much more. Nevertheless, an open problem on a basic functionality, the single-input
inner-product (IPFE), remains: can IPFE be instantiated based on the Ring Learning
With Errors (RLWE) assumption?
The RLWE assumption provides quantum-resistance security while in comparison with
LWE assumption gives significant performance and compactness gains. In this paper
we present the first IPFE scheme whose security is guaranteed relying on the RLWE
assumption. The security proof requires developing two new results on ideal lattices. The
first result is a variant of Ring-LWE, that we call multi-hint extended Ring-LWE, where
some hints on the secret and the noise are given. We present a reduction from RLWE
problem to this variant. The second tool is a special form of Leftover Hash Lemma (LHL)
over rings, which we call Ring-LHL.
To demonstrate the e�ciency of our scheme we provide an optimized implementation of
RLWE-based IPFE scheme and show its performance on a practical use case.

Keywords: Functional Encryption, Inner-Product, Lattice-Based Cryptography, Learn-
ing with Errors over Ring.

1 Introduction

Functional Encryption (FE) [13,37] is an extended form of traditional public-key encryption,
which can overcome the all-or-nothing access, inherent to the public-key encryption. It allows
an authorized user holding a functional-key skf to get a function of the message as f(m), by
applying skf to the encryption of the message m. The functionality provided by this primitive
can be useful in practical scenarios such as cloud computing and computation over encrypted
data without interactions.

The idea of FE tracks back to the Identity-Based Encryption (IBE) [12,47],
Attribute-Based Encryption (ABE) [44] and Predicated Encryption (PE) [28]. Generally

speaking, all these extensions and their variants can be unified under the name of FE for an
arbitrary computation circuit f [13]. But the FE schemes supporting general computation
circuits either are secure only against a bounded numbers of collisions [24, 25], or rely on strong
primitives [20]. More importantly, they all su�er from severe ine�ciency.
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For these reasons a research area emerged with the goal of designing FE with limited but
still wide classes of functionalities that are e�cient enough to be implemented and used in
practice. Particularly, FE for Inner-Product (IP) functionality [1, 6], is one of the most popular
special cases of FE.

Inner-Product FE (IPFE) [1,6] is a special case of FE supporting the inner-product function-
ality. In an IPFE scheme the message is a vector x œ Mn encrypted as ctx and the decryption-key
sky is associated with a n-dimensional vector y. The decryption (of ctx using sky) gets Èx, yÍ,
i.e. the inner-product.

IPFE is a well studied problem which is already instantiated based on di�erent assumptions
such as the Decisional Di�e-Helman (DDH), Decisional Composite Reminder (DCR), and
Learning With Errors (LWE) [1, 6] assumption. Several variants of IPFE extending the security
or functionality are proposed as well. For example, (decentralized) function-hiding IPFE [4,11],
multi-client IPFE [2, 18], and predicate IPFE [9, 29]. Despite of all the progress in this field,
it has still remained an open problem to present an e�cient IPFE based on quantum-secure
assumptions. The only quantum-secure assumption that we can realize an IPFE based on, is
LWE assumption [1, 6] with the resulting IPFE construction being computationally demanding.

Security of FE. Indistinguishability (IND) [13] is the standard security notion for FE. In-
formally, it says that an adversary given a ciphertext ctmb , for b

RΩ {0, 1}, cannot distinguish
between challenges m

0 and m
1, even if it has access to decryption-keys skf1 , . . . , skfk , for

k = poly(Ÿ), conditioned on fi(m0) = fi(m1).
One can further consider two kinds of IND-security: selective and adaptive. In selective-IND

(sel-IND), the adversary is restricted to submit its challenges m
0 and m

1 at the very beginning
of the game and before seeing the public-key, while in adaptive-IND there is no such restriction.

Lattice-Based IPFE. Informally, a lattice L is a discrete subset of Rn which can be generated
by (integer) linear combination of several vectors, known as the basis. In this setting, the nice
variety of computationally-hard problems against quantum adversaries make it interesting for
the cryptography purpose [7].

The problem of Learning With Errors (LWE) [43] discuses solving a system of noisy equations
and is known to be as hard as standard hard lattice-problems in the worst case. This problem
is usually used as a bridge between cryptosystems and standard hard lattice-problems. The
first lattice-based public-key encryption relying on LWE assumption was proposed by Regev
[43]. It has also served as the basis for CCA-secure public-key encryption [36,39], secure IBE
[5, 23], fully homomorphic encryption [16], indistinguishability obfuscation [15, 21] and much
more. Agrawal et al. [6] proposed an IPFE relying on hardness of LWE problem. Unfortunately,
due to the large-dimension matrices in the LWE problem (leading to the large keys and slow
operations), the resulting construction is not truly practical. The scheme of [1] su�ers from
similar issues while it is only selectively-secure. In [49], authors tried to improve the standard
deviation of error term (by using re-randomization technique of [27] instead of using multi-hint
extended LWE assumption), but the size of the public key still grows quadratically w.r.t the
length of the message and LWE-parameter n.

RLWE. The Ring-LWE (RLWE) problem, introduced by Lyubashevsky et al. [33], is the
problem of distinguishing between two distributions in a special ring Rq:

(a, as + e) and (a, u)

with a, u
RΩ Rq, the secret s Ω ‰, and noise e Ω ‰, where ‰ is a special distribution over the

ring, and all the samples share the same secret s. It was introduced as a more e�cient and
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compact version of LWE problem, which can be defined in a similar way, but simply over Zq

(i.e., a, s œ Zn
q ,e, u œ Zq) rather than Rq.

Note that the hardness of RLWE depends on the choice of ring Rq and distribution ‰. In
[33] it was shown that RLWE, with properly chosen parameters, is as hard as standard hard
lattice problems.

Due to its compact form, relying on RLWE usually leads to practical encryption systems
with smaller keys. Moreover, thanks to the Fast Fourier Transform, multiplication in rings can be
further accelerated. These properties make RLWE one of the most interesting and competitive
assumptions to develop a post-quantum cryptosystem based on [17,48].

Challenges and Contributions
Although RLWE can provide significant e�ciency gains, reducing the security of an encryption
systems to RLWE assumption is usually more complicated and tricky, compared with the ones
based on LWE. The main obstacles here are: either the lack of common cryptographic-tools
compatible with the ring structure, or the lack of variants of RLWE (which are as hard as
RLWE) compatible with certain encryption systems. In comparison, LWE is a better understood
problem with several variants, and thanks to its matrix-based structure in Zq, it can be more
easily combined with other tools and assumptions during security proofs.
Main Task: In this work, we study the IPFE cryptosystem and the required tools for the
security reduction from RLWE to IPFE.

The first IPFE scheme based on quantum-secure assumption was developed in [1]. This
scheme is based on the LWE assumption and proved to be selectively secure.

In [6], authors presented an adaptively secure IPFE scheme relying on the same assumption.
To extend the security to the adaptive case, they used a variant of LWE assumption, named

multi-hint extended-LWE (mhe-LWE) in which some hints on the noise terms are considered.
The mhe-LWE says that samples are still indistinguishable from uniform, even given these hints.
They proved a reduction from LWE problem to mhe-LWE, for a proper choice of parameters.
This variant of LWE is then used directly in the security proof of their IPFE scheme, where hints
help to simulate the quires. In the first step, by mhe-LWE, they manage to insert a uniformly
random vector in the ciphertext. But as this randomness is multiplied in another vector, in the
second step, they still need to apply the Leftover Hash Lemma (LHL) to get a uniform term in
the ciphertext.

In this work we follow a somewhat similar approach, while due to the algebraic structure
of RLWE and the mentioned obstacles, the details need to be crafted carefully. We build our
required tools step by step, namely we extend the similar variants of mhe-LWE and LHL over
rings. We then construct two IPFE schemes based on RLWE assumption: an adaptively secure
whose security proof employs mhe-RLWE and Ring-LHL, and a more e�cient but just selectively
secure scheme relying only on mhe-RLWE.

Contribution 1. We present a ring version of mhe-LWE that we call mhe-RLWE. The mhe-
RLWE problem is to distinguish two RLWE samples, given additional information on the secret
and noise term through some hints of a special form. More precisely:

¶ The task of mhe-RLWE is to distinguish between the distributions

(a, ar + f, (ei, si, eir + gi, sif + hi)iœ[¸]) and (a, u, (ei, si, eir + gi, sif + hi)iœ[¸]).

where a, u are uniformly sampled from Rq, polynomials r, f, gi, hi are sampled from Gaussian
distributions, and si, ei with ÎsiÎŒ , ÎeiÎŒ Æ C are arbitrary polynomials with bounded
coe�cients.
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In comparison with mhe-LWE, where hints are scalar products Èsi, fÍ with (high dimensional)
vectors si sampled from a specific distribution · , in mhe-RLWE hints are ring products of the
form sif + hi with si arbitrary bounded elements of Rq and additional noise hi is introduced.
An important observation is that our mhe-RLWE not only includes hints over the noise but
also over the secret, which makes it of independent interest and flexible to be used in more
complex cryptosystems. Moreover, the reduction from LWE to mhe-LWE requires m = œ(n log n)
samples, which directly a�ects the performance and the size of the keys in IPFE scheme, while
no such requirement is needed in mhe-RLWE.

Intuitively, to prove the reduction from RLWE to mhe-RLWE, the main idea
is that for a given RLWE sample (a, b = ar + f) one can sample additional randomnesses

r
Õ
, f

Õ
, g

Õ
i, h

Õ
i from specific distributions, so that (a, b

Õ = b + ar
Õ + f

Õ
, (ei, si, eir

Õ + g
Õ
i, sif

Õ + h
Õ
i))

has the right distribution to be submitted to the mhe-RLWE solver.
To show that the distribution obtained in this way is statistically close to the the one

in the real game, we prove a lemma expressing that the sum of particular discrete Gaussian
distributions is (close to) Gaussian. Intuitively, we define these distributions based on values ei,
jointly sample polynomials r

Õ
, g

Õ
i and use the mentioned lemma to show that hints eir

Õ + g
Õ
i and

simulated secret r + r
Õ have the right distribution (similarly for the hints over the error).

The second required tool (to develop our RLWE-based IPFE scheme) is a ring version
of LHL (Ring-LHL). Informally, in Ring-LHL the main goal is to show that the distributionqk

i=1 aiti œ Rq is close to uniform when a = (a1, . . . , ak) is fixed with ai uniformly sampled
from the ring and t = (t1, . . . , tk) is sampled from a distribution with high min-entropy over the
ring. In [48], authors presented a special case of Ring-LHL where t is sampled from a Gaussian
distribution and no extra information is available.

For our RLWE-based IPFE, Ring-LHL is needed to show that
qk

i=1 aiti is close to uniform
even in the presence of additional information leaking on t through the public-key. While the
result from [48] enjoys small entropy demands on values ti and small value k, it can not handle
the information-leakage. On the other hand, the result from [30] is theoretically su�cient and
can handle the leakage, however, it su�ers from large parameters, specially the size of k (length
of vector a) is of order of the security parameter. There are still similar versions of Ring-LHL
(such as [34]) but due to the need for clear and e�cient choice of parameters, we propose a special
version of Ring-LHL which manages to handle the information-leaking from the public-key and
still enjoys small parameters. In fact, we generalize the Ring-LHL version of [48] from (a, Èa, tÍ)
to the matrix-coe�cient (A, At), which is enough for our aim in the security proof of IPFE.

Contribution 2. Apart from relying on LWE, both schemes [1] and [6] require LHL to insert
a uniform term in the ciphertext. We present two IPFE constructions based on RLWE, our
first IPFE scheme is selectively-secure with smaller parameters, while our second scheme is
adaptively-secure. The compactness of RLWE brings two benefits to our schemes: it not only
improves the e�ciency of encryption in general, but also allows for parallel encryptions while
the computational-complexity does not grow by the number of encryptions. Technically, this
means a single decryption returns a matrix-multiplication, rather than an inner-product value.

For each of our schemes we follow a somehow di�erent proof technique. Particularly, in
our first construction, for the sake of a higher e�ciency, we avoid the use of Ring-LHL in
the security proof. More precisely, in our selectively-secure IPFE (sel-IPFE) scheme, at the
first step, we use mhe-RLWE which leads to the appearance of a term u · si in the ciphertext
associated with the i-th slot, where u œ Rq is uniform and si œ R is the secret-key sampled from
Gaussian distribution. Then in the second step, we change the structure of the secret-key in an
indistinguishable way, which is only possible in the selective setting. This new structure allows
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us to remove the secret si from the functional-key, while it is still present in the public-key
pki = asi + ei. Having the noise term in the public-key and an extra noise in the ciphertext
allow us to see si as the secret for two samples of RLWE in the public-key and in the ciphertext.
Thus we rely on two samples of RLWE rather than relying on Ring-LHL.

For our adaptively secure IPFE, the first step is similar to the one in sel-IPFE while here
u and si belong to Rm

q (vector-of-polynomials). Then we step back to the selective-game and
change the structure of sito get rid of it in the functional-key. Interestingly, we have the freedom
to come back to the adaptive-game via a mechanism similar to the Complexity Leveraging
(CL) and without losing any factor of the security. The prominent observation here is that after
stepping back to the selective-security, all of our upcoming games (in the sequence of the games)
are statistically-indistinguishable, thanks to the use of Ring-LHL rather than RLWE assumption
(unlike how we proceeded in our sel-IPFE). This means all these games can be upgraded to
their adaptive versions by the correct setting of the parameters in the statistical arguments.

Now coming back to the proof-intuition, we use our simple extension of Ring-LHL for
A = ( a

u ) to replace asi and usi with uniform values, respectively, in the public-key and in the
ciphertext. In Ring-LHL with A œ Rk◊m

q , the only condition on m is that m Ø k + 1, where
in our case k = 2. Thus, we can consider m = 3, which means that in comparison with our
sel-IPFE the size of the key increases only by a constant size. The use of Ring-LHL demands the
variance of secrets to be greater than the one in the selective case, but still giving a reasonable
e�ciency.

In Fig. 1 we present a general comparison of our scheme with related works.

Contribution 3. We provide an e�cient implementation to substantiate our claims of e�ciency.
Our scheme needs large polynomials where each coe�cient can span multiple machine words.
Further, the number of polynomial multiplications required in our inner-product functional
scheme increases linearly with the length of the vectors. To overcome this, we provide a
residue number system based implementation using Chinese remainder theorem and number
theoretic transform based multiplication. We further show how the construction of the functional
encryption scheme can be exploited to speed-up the multiplication. To reduce the risk of
side-channel attacks we avoid all secret dependent branching and use a state-of-the-art constant-
time discrete Gaussian sampler to generate error and secret polynomials. Finally, we show
using a real world use-case that our work can be helpful for providing practical solutions for
privacy-preserving machine learning applications.

|mpk| |msk| |ct| |skf |
ALS16 [6] O(n2 log2

q + ¸n log q) O(¸n log2
q) O(n log q

2 + ¸ log q) O(n log2
q)

ABDP15 [1] O((n + ¸)n log2
q) O(¸n log q) O((n + ¸) log q) O(n log q)

RLWE-FE O(¸n log q) O(¸n log q) O(¸n log q) O(n log q)

Setup Encryption KeyGen Decryption
ALS16 [6] O(¸n

2 log q) O(n2 log q + ¸n) O(¸n log q) O(n log q + ¸)
ABDP15 [1] O(¸n

2 log q) O((¸ + n)n log q) O(¸n) O(l + n)
RLWE-FE O(¸n log n) O(¸n log n) O(¸n) O(¸n + n log n)

Fig. 1: Complexity comparison with related works. Upper and bottom part of the table respec-
tively present the space and time complexity where the operations are in Zq. Value ¸ is the length
of the message-vector, n and q are LWE or RLWE parameters. Since in our adaptively-secure
FE scheme m = 3, all the above complexity arguments are the same for both of our schemes.
However, other parameters, such as the choice of standard deviations, are di�erent.
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2 Preliminaries

2.1 Notations

In this paper we shall denote with R a polynomial ring R = Z[x]/Õ where Õ is an irreducible
polynomial. For the sake of simplicity (and implementation) Õ will be equal to x

n + 1, where n

is a power of 2. We shall use a standard notation Rq to denote R/qR = Zq[x]/Õ. The modulus
q is chosen such that polynomial Õ of degree n factors into n distinct linear polynomials over
Zq, i.e. Õ =

r
i „i, where each „i is linear. Therefore, by Chinese Remainder Theorem (CRT),

the ring Rq factors into n ideals and can be written as Rq
≥=

r
i Rq/„i. Since each Rq/„i is

isomorphic to Zq, this gives an isomorphism between Rq and Zn
q . The latter is specifically

usefull in the Ring-LHL argument, and consequently for our adaptively secure IPFE scheme.
Moreover, if Õ factors as explained, then the multiplication of elements in Rq can be implemented
in time O(n log n) using so called Fast Fourier Transform, which is important for a practical
performance.

For a œ R (or a œ Rq) a polynomial of degree less than n, we shall denote a œ Zn (or a œ Zn
q )

the vector of the coe�cients of a, and vice versa. When the coe�cients of a are sampled from
some distribution ‰ we write a Ω ‰. In this paper, [¸] stands for the set {1, . . . , ¸} and ÎvÎŒ
and ||v|| stand for the infinity and Euclidean norm, respectively. We write x

RΩ X to show
that the element x is sampled uniformly at random from the set X. The security parameter is
denoted by Ÿ (which is independent from parameters for RLWE problem).

2.2 Discrete Gaussian Distribution

In this section we give a definition of the discrete Gaussian distribution and present some results
regarding it that will be used latter in the paper.

Definition 1. A discrete Gaussian distribution D»,
Ô

À,c, for c œ Rn, À a positive definite
matrix in Rn◊n, and » µ Zn a lattice, is a distribution with values in » and probabilities

Pr(X = x) Ã exp(≠1
2(x ≠ e)T

À
≠1(x ≠ e)),

If » = Zn we shall write just DÔ
À,c. Furthermore, if c = 0, then we shall write just DÔ

À , and
if

Ô
À = ‡In for ‡ œ R+ and In an identity matrix, we write D‡.
We define flB(x) = exp(≠xT (BB

T )≠1x). It follows directly from the definition that for any
invertible matrix — it holds flÔ

À(—≠1x) = fl—
Ô

À(x). For a lattice » we shall write flB(») =q
xœ» flB(x).
Discrete Gaussian distribution has many nice properties, for example: its samples can be

easily bounded, and sampling from it is computationally feasible (see Appendix A.2). It is well
known that the sum of continuous independent Gaussian distributions is also Gaussian. The
following lemma discusses that the sum of discrete Gaussian variables is (close to) Gaussian
under certain conditions over covariance matrices. A special case of this lemma was proved and
used in [1].

Lemma 1. Let L(B) ™ Zn be a sub-lattice with dimension k whose basis is given by the columns
of (n ◊ k)-matrix B. Let À œ Rn◊n be a positive definite matrix and define À

Õ = ‡
Õ2

BB
T . Then

sampling e from a discrete Gaussian distribution DÔ
(À+ÀÕ) is indistinguishable from sampling

e = e1 + e2, where e1 is sampled from DÔ
À and e2 œ L(B) is independently sampled from

DÔ
ÀÕ , as long as the eigenvalues of ≈À,ÀÕ :=


‡Õ2Ik ≠ ‡Õ4BT (À + ÀÕ)≠1B are greater than

the smoothing parameter ÷‘(Zk).
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Proof. Define

À
ÕÕ =

5
À 0
0 ‡

Õ2
Ik

6
, — =

#
In B

$
, —

Õ =
5

In B

X
T

Ik + X
T

B

6
, X = ≠‡

Õ2(À + À
Õ)≠1

B

Defining À
ÕÕÕ = (—ÕÔ

ÀÕÕ)(—ÕÔ
ÀÕÕ)T we have by a simple calculation

À
ÕÕÕ =

5
À + À

Õ 0
0 ‡

Õ2
Ik ≠ ‡

Õ4
B

T (À + À
Õ)≠1

B

6
.

Let e1 be sampled from DÔ
À and e2 be sampled from D‡ÕIk . Let e = e1 + Be2. Notice that

sampling e3 œ L(B) from DÔ
ÀÕ is by definition equivalent to sampling Be2 where e2 is sampled

from D‡ÕIk . Let eÕ =
5
e1
e2

6
, and notice that eÕ is sampled from DÔ

ÀÕÕ . Now

Pr(e = z) = Pr(—eÕ = z)

=
ÿ

sœZk

Pr(—ÕeÕ =
5

z
X

T z + s

6
=

ÿ

sœZk

Pr(eÕ = —
Õ≠1

5
z

X
T z + s

6

Ã
ÿ

sœZk

flÔ
ÀÕÕ(—Õ≠1

5
z

X
T z + s

6
) Ã

ÿ

sœZk

fl—Õ
Ô

ÀÕÕ(
5

z
X

T z + s

6
)

Ã
ÿ

sœZk

flÔ
À+ÀÕ(z)flÔ

‡Õ2Ik≠‡Õ4BT (À+ÀÕ)≠1B
(XT z + s)

Ã flÔ
À+ÀÕ(z)flÔ

‡Õ2Ik≠‡Õ4BT (À+ÀÕ)≠1B
(XT z + Zk)

Ã flÔ
À+ÀÕ(z)flÔ

‡Õ2Ik≠‡Õ4BT (À+ÀÕ)≠1B
(Zk)µz by Lemma 8

Ã flÔ
À+ÀÕ(z)µz, for µz œ [ 1 ≠ ‘

1 + ‘
, 1]

Where Lemma 8 can be applied as long as the eigenvalues of matrix ≈À,ÀÕ > ÷‘(Zk), where
≈À,ÀÕ :=


‡Õ2Ik ≠ ‡Õ4BT (À + ÀÕ)≠1B. ÙÛ

We shall be using Lemma 1 in the following cases. We will have À = ‡
2
In ≠ ‡

Õ2
BB

T
, À

Õ =
‡

Õ2
BB

T so that À + À
Õ = ‡

2
In. Then

Ò
‡Õ2Ik ≠ ‡Õ4BT (À + ÀÕ)≠1B = ‡

Õ
Ú

Ik ≠ ‡Õ2

‡2 BBT

which is > ÷‘(Zk) for example if ‡
2 = 2||‡Õ2

BB
T || and ‡

Õ
> 2÷‘(Zk), but more specific bounds

can be derived as well.

2.3 RLWE problem
In the seminal work [33], the authors introduced RLWE problem and study its hardness. In the
following we define RLWE problem, while one can consult Theorem 5 in the Appendix A.3 or
[33] for the choice of the parameters in the reduction from SIVP, a standard hard lattice-problem,
to RLWE.
Definition 2 ((Decisional) RLWE6). The Ring Learning With Errors problem, w.r.t the
ring Rq and the distribution D‡, is to distinguish between two following distributions with the
secret s Ω D‡ fixed for all the samples,

D = {(a, as + e) : a
RΩ Rq, e Ω D‡}, D

Õ = {(a, u) : a, u
RΩ Rq}

6 Here we have considered a special form of RLWE which would be used in this paper.
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2.4 Functional Encryption

This section discusses the syntax of a FE scheme and its security notion.

Definition 3 (Functional Encryption scheme). A FE scheme parameterized by fl = (X, Y, Z, f)
for functionality f : X ◊ Y æ Z, is defined by four following algorithms.

- (mpk, msk) Ω Setup(1Ÿ): where Setup receives security parameter Ÿ, and returns a pair of
master public and secret key. The public-key implicitly defines the functionality-parameter fl.

- ct Ω Enc(mpk, x): where Enc receives the master public-key mpk and a message x œ X, and
it returns a ciphertext ct.

- sky Ω KeyGen(msk, y): where KeyGen receives the master secret-key msk and function y œ Y ,
then it returns a functional-key sky.

- Y := Dec(ct, sk): it receives a ciphertext ct and a functional-key sk, and returns ‹ or a
value in the range of f .

Correctness. For a correct execution of the above encryption system, Dec(ct, skF ) would
return fy(x) where ct Ω Enc(mpk, x) and sky Ω KeyGen(msk, y). Clearly for the inner-product
functionality fy(x) = Èx, yÍ =

q
iœ[¸] xiyi where x, y œ M¸.

Security Notion. Following the standard security notion for FE [1, 13], the game INDb
A(1Ÿ)

between the adversary A and challenger is defined as follows, where b
RΩ {0, 1}.

– Initialize: The challenger runs (msk, mpk) Ω Setup(1Ÿ) and send mpk to A.
– Query: The adversary adaptively submits queries y and receives the response sky =

KeyGen(msk, y) from the challenger.
– Challenge: The adversary submits messages x0

, x1, the challenger runs ct Ω Enc(mpk, xb)
and returns it to A. The challenge should satisfy the constraint fy(x0) = fy(x1) for all the
previously issed queries y.

– Query: The adversary adaptively submits queries y and receives the response sky =
KeyGen(msk, y), where the queries y should satisfy the constraint fy(x0) = fy(x1).

– Finalize: The adversary outputs a bit b
Õ as its guess for the bit b.

We say a FE scheme is (adaptively) indistinguishable-secure (IND-secure), if for any PPT

adversary A there is a negligible function negl such that,

AdvFE
A (INDb

A) = | Pr[IND1
A(1Ÿ) = 1] ≠ Pr[IND0

A(1Ÿ) = 1]| Æ negl(Ÿ)

Moreover, we say that a FE scheme is selectively secure, if the adversary submits its challenges
(x0

, x1) at the very beginning of the game before seeing the public-key.

3 New results on ideal lattices

In this section we present our new results on lattices which are used in the security proof of our
IPFE constructions and might be of independent interest.

3.1 Multi-hint extended RLWE problem

We define a variant of the RLWE problem where additional information about the secrets
and the noise is given through some hints. These hints are of the form eir + gi and sif + hi,
where ei, si œ R are arbitrary (possibly even chosen by the adversary) but with bounded norm
||si||Œ, ||ei||Œ Æ C for some C > 0, and gi, hi are sampled from the same distribution as r and
f . We give a formal definition below.
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Definition 4 (multi-hint extended RLWE (mhe-RLWE)). Let a, u œ Rq be uniformly
sampled, si, ei œ R be arbitrary such that ||si||Œ, ||ei||Œ Æ C for some C > 0 and r, f, gi, hi œ Rq

sampled from D”In for i œ [l]. The multi-hint extended RLWE problem is to distinguish the
tuples

(a, ar + f, (ei, si, eir + gi, sif + hi)iœ[l]) and (a, u, (ei, si, eir + gi, sif + hi)iœ[l]).

We prove that, for properly chosen parameters, mhe-RLWE problem is at least as hard as
the standard RLWE problem. Note that its hardness depends on the choice of Rq (implicitly
on n and q), bound C and standard deviation ”. Values si, ei can be chosen arbitrary and if
si = ei = 0 for all i œ [l], then the problem corresponds to the standard RLWE problem.

Theorem 1. Let Rq, ‡ be such that the RLWE problem in Rq is hard, assuming the secret and
errors are sampled from D‡In . Then mhe-RLWE problem with bound C and standard deviation
” is hard, when ‡

Ò
1 ≠ 1

”2 (‡nC
Ô

l + 2)2 > ÷‘(Zn+nl).

Proof. Let ∆ be a (n + nl) ◊ (n + nl) diagonal matrix with values ”
2 on the diagonal, i.e.

∆ = ”
2
In+ln. Sampling r, gi from D”In is by definition indistinguishable from sampling a vector

(r, g1, . . . , gl) from DÔ
∆.

Each multiplication Tei(x) = eix œ R for ei, x œ R (as a linear function from R to R) can
be represented as a matrix multiplication Eix (and thus a liner function from Zn to Zn) for
some matrix Ei of dimension n ◊ n, independent of x. Let »̄ be a subspace of Rn+nl defined on
all the vectors v = (r, ≠E1r, . . . , ≠Elr) for arbitrary r œ R. Then » = Zn fl »̄ is precisely the
sub-lattice of all vectors (r, g1, . . . , gl) for which the hints eir + gi = 0.

Then elements of » can be written as Lr for r œ R, where L is a matrix of dimension
(n + nl) ◊ n as follows:

L =

S

WU

I
≠E1
≠E2

...
≠El

T

XV

When r is sampled from a Gaussian distribution D‡In , the distribution of vector Lr is D»,
Ô

B ,
where the covariance matrix associated with » is defined as B = ‡

2
LL

T
.

Now we define matrix A = ∆ ≠ B, that will be later used as a covariance matrix. We claim
that matrix A is positive semi-definite.

We use the following result to prove A is positive semi-definite for a proper choice of
parameters. Recall that a matrix is X = [xij ] is diagonally dominated if |xii| Ø

q
j ”=i |xij | for

any i. By a classical result from linear algebra, if a symmetric matrix X with real components
is diagonally dominated, then A is positive semi-definite. Since A is symmetric with real
components, it is enough to prove that A is diagonally dominated and the claim follows. Note
that by the condition ÎeiÎŒ Æ C we have ÎEiEjÎŒ Æ nC

2, meaning that each component of
EiEj is bounded by nC

2. By the definition of A = ∆ ≠ B, we have |Aii| Ø ”
2 ≠ ‡

2
nC

2 andq
j ”=i |Aij | Æ ‡

2(l ≠ 1)n2
C

2 + ‡
2(n ≠ 1)nC

2 + ‡
2
nC Æ ‡

2
n

2
C

2(l + 1). Thus if ” Ø ‡nC
Ô

l + 2

the matrix A as a diagonally dominated matrix. The assumption ‡

Ò
1 ≠ 1

”2 (‡nC
Ô

l + 2)2 >

÷‘(Zn+nl) implies the latter.
A similar analysis can be made for vectors (f , h1, . . . , hl) that are also chosen with covariance

matrix ∆. We would get covariance matrices A
Õ and B

Õ such that A
Õ = ∆ ≠ B

Õ and elements
sampled from B

Õ are in the sub-lattice of vectors of the form (f , ≠S1f , . . . , ≠Slf) with probability
as if f was sampled from D‡In , where Si is a matrix representation of si.
We now make a reduction from RLWE problem to multi-hint extended RLWE problem. Assume



10 Bermudo Mera et al.

the adversary is given a RLWE sample (a, b), where b is either uniformly sampled or calculated
as b = ar + f , where r, f are sampled from D‡In .

The adversary samples (rÕ
, gÕ

1, . . . , gÕ
l) from DÔ

A and (f Õ
, hÕ

1, . . . , hÕ
l) from DÔ

AÕ . It also
chooses arbitrary ei, si such that ÎeiÎŒ , ÎsiÎŒ Æ C, i œ [l]. Then it calculates b

Õ = b + ar
Õ + f

Õ

as the sample and eir
Õ + g

Õ
i, and sif

Õ + h
Õ
i as hints, for i œ [l].

If b was chosen uniformly at random, the distribution of b
Õ is uniformly random. In the other

case, b
Õ = a(r + r

Õ) + (f + f
Õ). To finish the proof we need to confirm that the distributions of b

and the hints are indistinguishable from the ones defined for mhRLWE.
Define r

ú = r + r
Õ
, f

ú = f + f
Õ, gi = ≠eir + g

Õ
i, and hi = ≠sif + h

Õ
i. Since r is sampled

from D‡In, the distribution of vector (r, ≠e1r, . . . , ≠elr) is as if it was sampled from DÔ
B.

On the other hand, the vector (rÕ
, gÕ

1, . . . , gÕ
l) is sampled from DÔ

A. Since A and B are positive
semi-definite and A + B = ∆, Lemma 1 implies that the distribution of (r + r

Õ
, g1, . . . , gl)

is indistinguishable from being sampled from D∆ which is the same as the distribution we
have in the assumption. In fact Lemma 1 can be applied since ≈A,B = ‡

Ò
In+nl ≠ ‡2

”2 LLT Ø

‡

Ò
1 ≠ 1

”2 (‡nC
Ô

l + 2)2 > ÷‘(Zn+nl), by assumption.
A similar arguments show that (f + f

Õ
, h1, . . . , hl) are also indistinguishable from being

sampled from D∆.
Since b

Õ = a(r + r
Õ) + (f + f

Õ) = ar
ú + f

ú this shows that b
Õ has the right distribution. On

the other hand,

eir
ú + gi = ei(r + r

Õ) ≠ eir + g
Õ
i = eir

Õ + g
Õ
i

sif
ú + hi = si(f + f

Õ) ≠ sif + h
Õ
i = sif

Õ + h
Õ
i

Thus also the hints have the right distribution, and even though gi and hi are defined w.r.t. r

and f , the hints are independent of r and f . This finishes the proof. ÙÛ

3.2 Leftover Hash Lemma in rings
Let A œ Rk◊m

q be a k ◊ m matrix with elements from Rq. The goal of this section is to show
that, with properly chosen parameters, the distribution of values At œ Rk

q , where t œ Rm
q comes

from a discrete Gaussian distribution, is close to uniform. This will be an important building
block in designing an adaptively secure IPFE scheme in Section 5, but might as well be of an
independent interest. Our result generalizes the result in [48], from k = 1 to an arbitrary k. We
follow closely the ideas as well as notation used in [48].

For a matrix A œ Rk◊m
q , we shall write ai œ Rm

q for the i-th row of A and ai,j œ Rq for the
entry in i-th row and j-th column. We denote with (Rk◊m

q )ú the set of all matrices A œ Rk◊m
q

for which the mapping fA : Rm
q æ Rk

q defined as matrix multiplication fA(x) = Ax is surjective.
Let ai = (ai,1, . . . , ai,m) œ Rm

q . Then denote:

a‹
i = {(t1, . . . , tm) œ Rm |

mÿ

i=j

ai,jtj = 0 mod q}

L(ai) = {(t1, . . . , tm) œ Rm | ÷s œ Rq, ’j œ [m] : tj mod q = ai.js}

For a matrix A œ Rk◊m
q we shall write:

L(A) := L(a1) + . . . + L(ak)

= {(t1, . . . , tm) œ Rm | ÷(s1, . . . , sk) œ Rk
q , ’j œ [m] : tj mod q =

kÿ

i=1
ai,jsi}
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For ai œ Rm
q define ax

i = (ax
i,1, . . . , a

x
i,m), where a

x
i,j := ai,j(x≠1). Then Ax is defined to have

i-th row ax
i .

For clarity, we first state our main theorem, while all the required lemmas are given latter.

Theorem 2. Let n be a power of 2 such that Õ = x
n + 1 splits into n linear factors mod-

ulo a prime q. Let k Ø 1, m Ø 1+k, ‘ > 0, ” œ (0, 1/2) and t œ Rm
q sampled from DZmn,‡ with ‡ Ø


n ln(2mn(1 + 1/”))/fiq

k
m + ‘

k . Then except for at most a fraction of 2n
q

≠‘n( qmk

(qm≠1)(qm≠q)···(qm≠qk≠1) )n

of all A œ (Rk◊m
q )ú the distance to the uniformity of

At = (
mÿ

i=1
a1,iti, . . . ,

mÿ

i=1
ak,iti)

is Æ 2”. This implies,

∆
#
A, At; U((Rk◊m

q )ú
, Rk

q )
$

Æ 2” + 2n
q

≠‘n( q
mk

(qm ≠ 1)(qm ≠ q) · · · (qm ≠ qk≠1) )n

Proof. Let ∆A denote the distance to the uniformity of At for fixed A œ (Rk◊m
q )ú. The mapping

t ‘æ At from Znm to Rk
q is surjective by the definition of (Rk◊m

q )ú. Its kernel is a‹
1 fl . . . fl a‹

k ,
where ai are rows of A. Hence the mapping induces an isomorphism between Znm

/(a‹
1 fl. . .fla‹

k )
and Rk

q .
This implies that the statistical distance ∆A is equal to the uniformity of t mod a‹

1 fl. . .fla‹
k .

By Lemma 2, it holds ∆A Æ 2”, if ‡ is greater than the smoothing parameter ÷”(a‹
1 fl . . . fl a‹

k ).
Then Lemma 3 bounds ÷”(a‹

1 fl . . . fl a‹
k ) Æ


ln(2mn(1 + 1/”)/fi/⁄

Œ
1 ( \a‹

1 fl . . . fl a‹
k ).

To bound ⁄
Œ
1 ( \a‹

1 fl . . . fl a‹
k ) we note that \L1 fl L2 = „L1 + „L2 where plus denotes linear

combinations of the lattices. By Lemma 4, „a‹
i = 1

q L(ax
i ), thus \a‹

1 fl . . . fl a‹
k = 1

q L(Ax).
Lemma 5 bounds ⁄

Œ
1 (L(Ax)) Ø 1Ô

n
q

1≠ k
m ≠ ‘

k , thus ⁄
Œ
1 ( 1

q L(Ax)) Ø 1Ô
n

q
≠ k

m ≠ ‘
k , except with

probability 2n 1
q‘n over the choice of Ax œ Rk◊m

q . Since A ‘æ Ax is a bijection, the latter holds
over the choice of A œ (Rk◊m

q ). Therefore, we have ⁄
Œ
1 ( 1

q L(Ax)) Ø 1Ô
n

q
≠ k

m ≠ ‘
k , except with

probability at most 2n 1
q‘n ( |Rk◊m

q |
|(Rk◊m

q )ú| ) over the choice of A œ (Rk◊m
q )ú.

On the other hand, it holds |Rk◊m
q |

|(Rk◊m
q )ú| = ( qmk

(qm≠1)(qm≠q)···(qm≠qk≠1) )n, which is obtained using
the fact that Rq

≥= Zn
q . In fact, Rq

≥= Zn
q implies that counting all possible A œ (Rk◊m

q )ú is
equivalent to counting the number of n-tuples of matrices Ai œ Zk◊m

q , each with linearly
independent rows over Zq. Thus the equation follows.

Summing up, if ‡ Ø


n ln(2mn(1 + 1/”))/fi · q
k
m + ‘

k then ∆a,b Æ 2”, except for a fraction of
2n

q
≠‘n( qmk

(qm≠1)(qm≠q)···(qm≠qk≠1) )n of A œ (Rk◊m
q )ú. ÙÛ

To determine practical values q, n, k, m for which the theorem can be applied, one needs to
choose n, m, q big enough that 2” + 2n

q
≠‘n( qmk

(qm≠1)(qm≠q)···(qm≠qk≠1) )n is negligible, while having
‡ =


n ln(2mn(1 + 1/”))/fiq

1+k
m + ‘

k as small as possible.
We now state all the result used in the proof of Theorem 2.

Lemma 2 ([23], Cor. 2.8). Let L
Õ ™ L ™ Rn. For every c œ Rn

, ” œ (0, 1/2), ‡ Ø ÷”(LÕ) we
have ∆(DL,‡,c mod L

Õ; U(L/L
Õ)) Æ 2”.
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Lemma 3 ([38] Lemma 3.5). For any lattice L ™ Rn and ” œ (0, 1), we have ÷”(L) Æ
ln(2n(1 + 1/”))/fi/⁄

Œ
1 (‚L).

Particular case for S = ÿ of [48, Lemma 7] gives:

Lemma 4 ([48]). Let a œ Rm
q , then „a‹ = 1

q L(ax).

The following lemma is a generalization of [48, Lemma 8], where it was proved for the case
k = 1. The proof directly follows the proof of [48, Lemma 8]. The main idea is to bound the
probability of the opposite event by a negligible value. Thus, we define p as the probability
that: for a randomly chosen A, L(A) contains a non-zero vector t with ÎtÎŒ <

1Ô
n

q
— . To

bound p, one needs to count the number of possible solutions aij which satisfy the relation tj

mod q =
qk

i=1 ai,jsi. We include the whole proof of Lemma 5 in Appendix A.4.

Lemma 5. Let n Ø 4 be a power of 2 such that Õ = x
n + 1 splits into n linear factors modulo

prime q and Rq = Zq[x]/ÈÕÍ. Then

⁄
Œ
1 (L(A)) Ø 1Ô

n
q

—
, where — = 1 ≠ k

2m
≠

Ô
k2 + 4m‘

2m
Ø 1 ≠ k

m
≠ ‘

k

except for a fraction of at most 2n 1
q‘n of all A œ Rk◊m

q .

4 Selectively-secure IPFE based on RLWE

Our IPFE construction is inspired by the LWE-based IPFE schemes from [1, 6], but here we
rely on the RLWE assumption to improve the e�ciency. Our construction allows to encrypt
¸-dimensional non-negative vectors, where infinity norms of the message x and the function y
are bounded by Bx and By, respectively. We let K be greater than the maximal value of the
resulting inner product i.e., K > ¸BxBy. We first describe the construction and postpone the
parameters-setting, required for the correctness and the security, to Section 4.2.

Construction:

– Setup: We sample uniformly at random a œ Rq and elements {si œ R | i œ [¸]}, {ei œ R |
i œ [¸]} from D‡1 . Then msk = {si | i œ [¸]} is the master secret-keys and the public-key is
mpk = (a, {pki | i œ [¸]}), where pki = asi + ei œ Rq.

– Encryption: To encrypt a vector x = (x1, . . . , x¸) œ Z¸ with ÎxÎŒ Æ Bx we sample
polynomials r and f0 œ Rq from D‡2 , and polynomials {fi œ Rq | i œ [¸]} independently
from D‡3 . We fix 1R to be the identity element of Rq (or it can be a polynomial of degree
n ≠ 1 with all coe�cients equal 1 œ Zq) and calculate:

ct0 = ar + f0 œ Rq, cti = pkir + fi + Âq/KÊxi1R œ Rq.

Then (ct0, {cti}iœ[¸]) is the encryption of x.
– KeyGen: To generate a decryption key associated with y = (y1, . . . , y¸) œ Z¸ such that

ÎyÎŒ < By, we calculate

sky =
ÿ̧

i=1
yisi œ R.



Lattice-based IPFE 13

– Decryption: To decrypt (ct0, {cti}iœ[¸]) using sky and y we calculate

d = (
ÿ̧

i=1
yicti) ≠ ct0sky mod Rq.

Then d should be close to Âq/KÊÈx, yÍ1R (a bit perturbed coe�cients) and we can extract
Èx, yÍ.

Correctness. We can write d as,

d = (
ÿ̧

i=1
yicti) ≠ ct0sky mod Rq

=
ÿ

i

(yieir + yifi + f0yisi) + Âq/KÊxiyi1R = noise + Âq/KÊÈx, yÍ1R

For the correctness we need ÎnoiseÎŒ < Âq/2KÊ. By Lemma 6 in the Appendix A.2 for the
security parameter Ÿ, with overwhelming probability we have, ÎeiÎŒ , ÎsiÎŒ Æ

Ô
Ÿ‡1, also

ÎrÎŒ , Îf0ÎŒ Æ
Ô

Ÿ‡2 and ÎfiÎŒ Æ
Ô

Ÿ‡3.Thus,
.....
ÿ

i

yi(eir + fi + f0si)

.....
Œ

< ¸(2nŸ‡1‡2 +
Ô

Ÿ‡3)By

Meaning that for the correctness we need ¸(2nŸ‡1‡2 +
Ô

Ÿ‡3)By < Âq/2KÊ.

4.1 Security proof

The following theorem proves the selective security of our construction. For the proof, we first
rewrite cti based on ct0 simply by replacing pki with its value asi + ei. This leads to the
appearance of the term ct0si in the ciphertext, alongside some leakages on r and f0. We try
to formulate these leakages as the hints in the mhe-RLWE assumption, which from there by
applying mhe-RLWE, we manage to replace ct0si with usi for a uniform polynomial u. Note
that si is appearing in the public-key, ciphertext and also the functional-key. Since we have
some error terms in the public-key and in the ciphertext, we may hope to use these errors to
look at si as the secret for RLWE samples (and a, u as the coe�cient for RLWE samples). Thus
intuitively, all we need is to remove si from the functional-key (mainly because there is no error
term in the functional-key, it avoids us to see si as the secret for RLWE samples). For this, we
(indistinguishably) change the structure of si to s

ú(x1
i ≠ x

0
i ) + s

Õ
i allowing to remove s

ú from the
functional-key (thanks to the constraint Èy, x1 ≠ x0Í = 0) and looking at s

ú as the secret for
two samples of RLWE appearing in the ciphertext and in the public-key. This means a uniform
term appears in the ciphertext which hides the bit b.

Theorem 3. The IPFE scheme from Section 4 is sel-IND secure, for a proper choice of
parameters (see Section 4.2). More precisely,

AdvFE
A (sel-IND

b
A) Æ AdvmheRLWE

B (Ÿ) + AdvRLWE
BÕ + negl(Ÿ).

where negl comes from a statistical arguments.

Proof. We define the following sequence of the games which are also summarized in Fig. 2. The
first game is the real game associated with bit b, while the last game is independent of bit b.
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Game Description justification

G0

si
RΩ D‡1

pki = asi + ei

sk =
q

i
yisi

ei
RΩ D‡1

ct0 = ar + f0
cti = pkir + fi + Âq/KÊx

b
i 1R

Real Game

G1

si
RΩ D‡1

pki = asi + ei

sk =
q

i
yisi

ei
RΩ D‡1

ct0 = ar + f0
cti = ct0si ≠ f0si + eir + fi + Âq/KÊx

b
i 1R

Identical

G2
pki = asi + ei

sk =
q

yisi

ct0 = u + ar + f0

cti = ct0si ≠ f0si + eir + fi + Âq/KÊx
b
i 1R

mhe-RLWE

G3
pki = asi + ei

sk =
q

yisi

ct0 = u + ar + f0
cti = pkir + usi + fi + Âq/KÊx

b
i 1R

Identical

G4

si = s
ú
–i + s

Õ
i fi = f

ú
–i + f

Õ
i

pki = (as
ú + e

ú)–i + as
Õ
i + e

Õ
i

sk =
q

i
yis

Õ
i

ei = e
ú
–i + e

Õ
i , –i = (x1

i ≠ x
0
i )

ct0 = u + ar + f0
cti = pkir + usi + fi + Âq/KÊx

b
i 1R

Stati. argu.

G5
pki = (as

ú + e
ú)–i + as

Õ
i + e

Õ
i

sk =
q

i
yis

Õ
i

ct0 = u + ar + f0
cti = (as

ú + e
ú)r + (us

ú + f
ú)–i+

(as
Õ
i + e

Õ
i)r + us

Õ
i + f

Õ
i + Âq/KÊx

b
i 1R

Identical.

G6
pki = u

Õ
–i + as

Õ
i + e

Õ
i

sk =
q

i
yis

Õ
i

ct0 = u + ar + f0

cti = u
Õ
r + u

ÕÕ
–i+

(as
Õ
i + e

Õ
i)r + us

Õ
i + f

Õ
i + Âq/KÊx

b
i 1R

RLWE
independent of b

Fig. 2: Overview of games for selectively-secure IPFE.

We will show that each two adjacent games are indistinguishable. Then since the last game
is independent of b, the advantage of the adversary in the real game is negligible. The formal
descriptions of games is given as follows.

G0 : is the real game associated with the bit b
RΩ {0, 1}.

G1 : is the same as game G0 when cti is rewritten base on ct0 (by replacing pki with asi + ei).
Namely, cti = ct0si ≠ f0si + eir + fi + Âq/KÊx

b
i1R.

Clearly, AdvFE
A,G0(Ÿ) = AdvFE

A,G1(Ÿ)

G2 : is similar to the game G1 except that ct0 = ar + f0 is replaced with ct0 = u + ar + f0 for
a uniformly sampled u œ Rq.
Here we rely on the mhe-RLWE assumption. The hints of the mhe-RLWE problem are leaked
through values cti where we replace fi with gi ≠ hi where hi and gi are sampled from the same
distribution D”In . This is possible if in Lemma 1 the covariance matrices À = À

Õ = ”In satisfy
the condition ≈À,ÀÕ Ø ÷‘(Zn) for ‘ = 2≠k. Meaning that we should set ‡3 = 2” where ” is
such that the mhe-RLWE assumption holds and also satisfies ≈”In,”In Ø ÷‘(Zn). So, by these
conditions,

|AdvFE
A,G2(Ÿ) ≠ AdvFE

A,G1(Ÿ)| Æ AdvmheRLWE
B (Ÿ) + 2‘.

G3 : is the same as game G2 when cti is rewritten based on pki (instead of ct0). Namely,
cti = pkir + usi + fi + Âq/KÊx

b
i1R, ct0 = u + ar + f0.

Obviously, AdvFE
A,G3(Ÿ) = AdvFE

A,G2(Ÿ)
To proceed to the next game, we first define the matrices S, E and F . Recall that the

master secret-key is a vector of polynomials (s1, . . . , s¸) where each polynomial is in Rq. This
means one call represent the master secret-key via a matrix S of dimension ¸ ◊ n, where the
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i-th row is the vector-representation of polynomial si i.e., S =
A

s1
...

s¸

B
. We shall call s̄j the j-th

column of matrix S. Similarly matrices E and F are defined corresponding to the noise vectors
(e1, . . . , e¸) and (f1, . . . , f¸). Consequently, ēj and f̄ j can be defined as the j-th columns of E
and F (res.). Now we define the next game as follows.

G4 : is similar to the game G3, except that, s̄j = (s1j , . . . , slj), ēj = (e1j , . . . , elj) (note that
sij is the j-th coordinate of polynomial si when si is seen as a vector) and f̄ j = (f1j , . . . , flj) for
sij , eij Ω D‡1 and fij Ω D‡3 , are respectively replaced with s

ú
j––– + s̄Õ

j , e
ú
j––– + ēÕ

j and f
ú
j ––– + f̄

Õ
j

where ––– = x1 ≠ x0, such that scalars s
ú
j , e

ú
j , f

ú
j are sampled as s

ú
j , e

ú
j Ω D‡Õ , f

ú
j Ω D‡ÕÕ and

vectors s̄Õ
j , ēÕ

j , f̄
Õ
j are sampled as s̄Õ

j , ēÕ
j Ω DÀ , and f̄

Õ
j Ω DÀÕ where À = ‡

2
1I¸ ≠ ‡

Õ2
–

T
–,

À
Õ = ‡

2
3I¸ ≠ ‡

ÕÕ2
–

T
– and ‡

Õ
, ‡

ÕÕ are positive values.
To show that this game is indistinguishable from its previous game, we apply Lemma 1.

Note that since Î–ÎŒ Æ 2Bx, if ‡1 >
Ô

¸2Bx‡
Õ and ‡3 >

Ô
¸2Bx‡

ÕÕ, then matrices À and À
Õ

are positive definite which is the only requirement in Lemma 1. Thus we have,

|AdvFE
A,G4(Ÿ) ≠ AdvFE

A,G3(Ÿ)| Æ 2n(2‘ + ‘
Õ)

where ‘, ‘
Õ = 2≠Ÿ

/n come from applying Lemma 1 respectively for s̄j , ēj and f̄ j with parameters
‡1, ‡3, ‡

Õ
, ‡

ÕÕ satisfying ≈À,‡Õ2–T – Ø ÷‘(Zn) and ≈ÀÕ,‡ÕÕ2–T – Ø ÷‘(Zn) for j = 1, . . . , n.
Now note that with the mentioned changes in the game G4, one can rewrite si (i.e., i-th row of

S) as si = sú
–i + sÕ

i where sú = (sú
1, . . . , s

ú
n), sÕ

i = (sÕ
i1, . . . , s

Õ
in) and s

Õ
ij is the i-th component

of vector s̄
Õ
j . Similarly we have, ei = eú

–i + eÕ
i and f i = fú

–i + f Õ
i. In the next game, we will

use the polynomial representation of these vectors.

G5 : is the same as game G4 where in pki, cti and sky, we have replaced si, ei and fi with
their new values from game G4. Thus,

pki = (as
ú + e

ú)–i + as
Õ
i + e

Õ
i, sky =

ÿ

i

yis
Õ
i

cti = (as
ú + e

ú)r + (us
ú + f

ú)–i + (as
Õ
i + e

Õ
i)r + us

Õ
i + f

Õ
i + Âq/KÊx

b
i1R

And we have, AdvFE
A,G5(Ÿ) = AdvFE

A,G4(Ÿ)
G6 : is similar to the game G5 except that, in pki and cti values as

ú + e
ú and us

ú + f
ú are

respectively replaced with uniform polynomials u
Õ and u

ÕÕ. Thus,

pki = u
Õ
–i + as

Õ
i + e

Õ
i, sky =

ÿ

i

yis
Õ
i

cti = u
Õ
r + u

ÕÕ
–i + (as

Õ
i + e

Õ
i)r + us

Õ
i + f

Õ
i + Âq/KÊx

b
i1R

We claim that relying on RLWE assumption G6 is indistinguishable from G5. Let B be the
attacker to the RLWE problem with two samples (a, b) and (u, b

Õ), it can simply simulate game
G6 when it has received uniform samples b = u

Õ and b
Õ = u

ÕÕ, and it simulates game G5 when it
has received samples with RLWE structures b = as

ú + e
ú and b = us

ú + f
ú. This is due to the

fact that s
ú
, e

ú and f
ú have not appeared anywhere else (individually) and the adversary B can

simulate all other required variables by herself simply by sampling from proper distributions.
Therefore,

|AdvFE
A,G6(Ÿ) ≠ AdvFE

A,G5(Ÿ)| Æ AdvRLWE
B (Ÿ)
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Note that here f
ú and e

ú need to be from the same distribution i.e., ‡
ÕÕ = ‡

Õ.
Adversary-advantage in Game G6. Now we show that in game G6 the advantage of the
adversary is zero. This complete the proof. Note that,

u
ÕÕ
–i + Âq/KÊx

b
i1R = u

ÕÕ(x1
i ≠ x

0
i ) + Âq/KÊx

b
i1R

= Âq/KÊ(Âq/KÊ≠1
u

ÕÕ(x1
i ≠ x

0
i ) + x

0
i 1R + b(x1

i ≠ x
0
i )1R)

= Âq/KÊ((Âq/KÊ≠1
u

ÕÕ + b1R)(x1
i ≠ x

0
i ) + x

0
i 1R)

= Âq/KÊ(û(x1
i ≠ x

0
i ) + x

0
i 1R),

where Âq/KÊ≠1 is the inverse of Âq/KÊ in Zq and û is uniformly sampled from Rq. The
last equality (which is due to the uniformity of u

ÕÕ) shows that in the game G6, the values
ct = (ct0, cti)i do not depend on the bit b and consequently the advantage of the adversary in
this game is 0. ÙÛ

Remark 1. Note that if one wants to encrypt a matrix X rather than a vector x, a trivial solution
is to run the encryption separately for each row of the matrix. This means that the encryption of
a matrix with m rows needs O(mT )-computations, where O(T ) is the computational-complexity
of one encryption-run. An interesting property of our scheme is that one can use the provided
compactness in the encryption to encrypt a matrix X only by O(T ) computational-complexity.
For this we just need to define vector 1k

R for k œ [n] as the polynomial of degree k ≠ 1 in Rq

with all the coe�cients zero except (k ≠ 1)th coe�cient equals 1. Then cti would be as follows:

cti = pkir + fi + Âq/KÊ
ÿ

kœ[n]
x

k
i 1k

R

where xk = (xk
i )i is the kth row of X and X has ¸ columns and maximum n rows. The security

proof is still working with some small editions: we define –––
k = x1

k ≠ x0
k associated with kth

row of X. Then in G4, we define the new structure of matrices S, E, F w.r.t all the vectors –––
k.

More precisely, jth column of S would be replaced with
q

kœ[n] s
ú
j,k–––

k + s̄Õ
j,k where s

ú
j,k, s̄Õ

j,k are
sampled independently for each index k.

4.2 Parameters Setting for selectively-secure IPFE

Here we overview the requirement for the parameters for our selectively-secure IPFE scheme,
where Ÿ and n are two separate security parameters (theoretically, one can consider them equal,
but we aimed for the e�cient implementation).
Correctness. Needs ¸(2nŸ‡1‡2 +

Ô
Ÿ‡3)By < Âq/2KÊ and q >> K > lBxBy.

Transition from G1 to G2. Needs ‡3 = 2‡2, ≈‡2In,‡2In Ø ÷‘(Zn) with ‘ = 2≠Ÿ (where matrix
≈ is defined in Lemma 1) and also all the parameter setting from mhe-RLWE assumption i.e.,
‡

Ò
1 ≠ 1

‡2
2
(‡nC

Ô
¸ + 2)2 > ÷‘(Zn+n¸) where ÎsiÎŒ, ÎeiÎŒ Æ C and ‡ is the parameter for the

hardness of RLWE. By Lemma 6, one can set C =
Ô

Ÿ‡1.
Transition from G3 to G4. Needs ‡1 >

Ô
¸2Bx‡

Õ and ‡3 Ø
Ô

¸2Bx‡
ÕÕ for non-negatives ‡

Õ and
‡

ÕÕ where ‡1, ‡3, ‡
Õ
, ‡

ÕÕ satisfy ≈Àj ,‡Õ2–T – Ø ÷‘(Zn) and ≈ÀÕ
j ,‡ÕÕ2–T – Ø ÷‘(Zn) with ‘, ‘

Õ = 2≠Ÿ
/n.

Transition from G5 to G6. Needs the parameter for the hardness of RLWE where the secret
and error are from the distribution D‡ÕIn and ‡

Õ = ‡
ÕÕ.

Hardness of RLWE. As we saw we need the parameters q, R, ‡ and ‡
Õ to satisfy the conditions

for the hardness of RLWE. We can use Theorem 5 from Appendix A.3, thus set R = Z[x]/(xn +1),
n is a power of 2, q = 1 mod 2n and ‡ = –q(n/ log n)1/4 and ‡

Õ = –
Õ
q(2n/ log(2n))1/4 where

– Æ


log n/n, –
Õ Æ


log n/n and Ô

–q Ø Ê(log n),
Ô

–Õq Ø Ê(log n).
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5 Adaptively secure IPFE based on RLWE

Here we modify the construction to lift the security to the adaptive case. The main di�erence
from our selectively-secure construction is that here each secret key si and the public parameter a

are vectors-of-polynomials rather than two single polynomials. Again the non-negative messages
x and functions y are bounded by Bx and By, respectively, and let K be greater than the
maximum value of the inner-product i.e., K > ¸BxBy. Though, in the security proof we discus
the required parameters, one can also check Section 5.1 for the parameter-setting.

Construction:

– Setup: Let R, Rq be as before. For each i œ [¸] sample si = (si1, . . . , sim) œ Rm where
each sij œ R is sampled from D‡1In . Sample a = (a1, . . . , am) œ Rm

q uniformly at random.
Check if at least one ai is invertible in Rq; if not, refuse a and sample it again7. Finally,
msk = {si | i œ [¸]} is the secret-key and the public-key is mpk = (a, {pki | i œ [¸]}), where
pki = Èa, siÍ =

q
j ajsij .

– Encrypt: To encrypt a vector x = (x1, . . . , x¸) œ Z¸ with ÎxÎŒ Æ Bx sample r œ Rq from
D‡2In and f0 = (f01, . . . , f0m) œ R

m
q from D‡2Inm , and {fi œ Rq | i œ [¸]} each from D‡3In .

Then
ct0 = ar + f0 = (a1r + f01, . . . , amr + f0m)

cti = pkir + fi + Âq/KÊxi1R.

Check if at least one element of ct0 is invertible in Rq and that ct0 is not a multiple of a
(over Rq); if this is not the case, resample r, f0 and recompute ct0, cti until the latter holds.
The ciphertext is (ct0, {cti}iœ[¸]).

– KeyGen: To generate the decryption key associated with y = (y1, . . . , y¸) œ Z¸ where
ÎyÎŒ < By, we calculate

sky =
ÿ̧

i=1
yisi = (

ÿ̧

i=1
yisi1, . . . ,

ÿ̧

i=1
yisim) œ Rm

– Decryption: To decrypt the ciphertext (ct0, {cti}iœ[¸]) by the decryption key sky, compute:

d = (
ÿ̧

i=1
yicti) ≠ Èct0, skyÍ

Then d should be close to Âq/KÊÈx, yÍ1R (a bit perturbed coe�cients) and we can extract
Èx, yÍ.

Correctness. Similar to the correctness proof in our sel-IPFE, one can verify that we need..q
i

!
yifi ≠ yiÈf0, siÍ

"..
Œ < Âq/2KÊ or equivalently, ¸By(

Ô
Ÿ‡3 + mnŸ‡1‡2) < Âq/2KÊ.

We claim that this modified version of our IPFE scheme is adaptively-secure. For the proof
we use a extended version of mhe-RLWE assumption associated with polynomially-many samples
(rather-than a single sample). We also use Theorem 2 which provides us with the required
variant of Ring-LHL.

The first steps of the proof are similar to the security proof of our sel-IPFE, namely, we
follow a similar sequence of the games from G0 to G4. But in the next games instead of using
two samples of RLWE, we use Ring-LHL. The reason for this is that the indistiguishability of
proceeding games relies only on statistical arguments and so one can upgrade the security to
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Game Description justification

G0

si
RΩ D‡1

pki = Èa, siÍ
sk =

q
i
yisi

ct0 = ar + f0
cti = pkir + fi + Âq/KÊx

b
i 1R

Real Game

G1

si
RΩ D‡1

pki = Èa, siÍ
sk =

q
i
yisi

ct0 = ar + f0
cti = Èct0, siÍ ≠ Èf0, siÍ + fi + Âq/KÊx

b
i 1R

Identical

G2
pki = Èa, siÍ
sk =

q
yisi

ct0 = u + ar + f0 where u = (u1, . . . , um) Ω (Rú
q)m

cti = Èct0, siÍ ≠ Èf0, siÍ + fi + Âq/KÊx
b
i 1R

mhe-RLWE

G3
pki = Èa, siÍ
sk =

q
yisi

ct0 = u + ar + f0
cti = pkir + Èu, siÍ + fi + Âq/KÊx

b
i 1R

Identical

G4

si = sú
–i + sÕ

i

pki = Èa, súÍ–i + Èa, sÕ
iÍ

sk =
q

yis
Õ
i

–i = (x1
i ≠ x

0
i )

ct0 = u + ar + f0
cti = pkir + Èu, súÍ–i + Èu, sÕ

iÍ + fi + Âq/KÊx
b
i 1R

sta.arg.

G5
pki = u

Õ
–i + Èa, sÕ

iÍ
sk =

q
yis

Õ
i

ct0 = u + ar + f0

cti = pkir + u
ÕÕ

–i + Èu, sÕ
iÍ + fi + Âq/KÊx

b
i 1R

LHL

Fig. 3: Overview of games for adaptively security IPFE.

the adaptive version by a technique similar to complexity leveraging and without loosing any
factor of security. The overview of games is given in Fig. 3.

Theorem 4. Our modified IPFE scheme is adaptively-secure, for proper choice of parameters.

Proof. We start with game G0 which is the real game associated with a chosen bit b, while the
last game is independent of bit b.

G0 : is the real game associated with bit b.

G1 : is the same as the previous game when cti is rewritten based on ct0 (replacing pki value)
i.e.,

cti = Èct0, siÍ ≠ Èf0, siÍ + fi + Âq/KÊx
b
i1R

Clearly, AdvFE
A,G1(Ÿ) = AdvFE

A,G0(Ÿ).

G2 : is similar to the game G1, except that, ct0 is replaced with u + ar + f0 where u is a
m-dimensional vector-of-polynomials uniformly sampled from Rm

q with property that at least
one element of u is invertible (recall that this holds also for the original ct0).

The proof of indistinguishability of G1 and G2 is similar to the counterpart transition for
selective-case in Theorem 3, except that here u is a vector-of-polynomials. Hence one needs to
use mhe-RLWE assumption with m samples (see Lemma 9). Moreover, the probability that the
uniformly-sampled vector fits the invertability condition is non-negligible (in fact, closer to 1).
Thus, distinguishing G1 from G2 breaks the version of mhe-RLWE, in which only the samples
with this property are given to the adversary. Or equivalently, mhe-RLWE can be solved with
non-negligible probability. Thus,

|AdvFE
A,G2(Ÿ) ≠ AdvFE

A,G1(Ÿ)| Æ AdvmheRLWE
B,m (Ÿ) + 2‘

where ‡3 = 2” and ‘ = 2≠Ÿ satisfy the condition ≈”In,”In Ø ÷‘(Zn).

G3 : is the same as the game G2 when cti is rewritten based on pki (replacing ct0), i.e.,
7 This step would be done e�ciently, since the probability that ai is invertible, is non-negligible.
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cti = pkir + Èu, siÍ + fi + Âq/KÊx
b
i1R.

Since the games are identical to the adversary, AdvFE
A,G3(Ÿ) = AdvFE

A,G2(Ÿ).

From this point, the games are defined in the selective-setting while the adjacent games are
statistically-indistinguishable. An elegant property of statistical-indistinguishability is that, the
selective and adaptive security can be equivalent for the proper choice of parameters. More
precisely, if the selective version of two adjacent games are statistically-indistinguishable one
can lift the security to adaptive by a proper choice of parameters via a complicity leveraging
mechanism and without losing any factor of security.

To proceed to the next game, at first define S = (S1, . . . , Sm) as the array of matrices
associated with the master secret-key where the i-th row in matrix Sj is sij for j œ [m] and
each sij is the vector representation of the corresponding polynomial sij (i.e., Sj has dimension
¸ ◊ n).

Gú
4 : is similar to the game G3 (in its selective version), except that, in matrix Sj the k-th

column is replaced with s̄j
k + (sj

k)ú
–––, where ––– = (x1 ≠ x0), scalar (sj

k)ú is sampled from D‡Õ and
vector s̄j

k is sampled from DÀ with À = ‡
2
1I¸ ≠ ‡

Õ
–

T
–. We call SÕ the new representation of the

master-secret key (after applying the mentioned changes on S). The transition from G3 to G4
is similar to the transition for the counterpart games in the security proof of our selective-secure
construction. Thus we have,

|AdvFE
A,Gú

4
(Ÿ) ≠ AdvFE

A,Gú
3
(Ÿ)| Æ 2nm‘

where Gú
3 is the selective-version of G3, ‘ = 2≠Ÿ

/nm and À, ‡
Õ satisfy the condition ≈À,‡Õ2–T – Ø

÷‘(Zn).

Changing S to SÕ as above, will consequently change si, as the i-th row of S, to the form
si = sú

–i + sÕ
i = (sú

1–i + s
Õ
i1, . . . , s

ú
m–i + s

Õ
im) in SÕ, where sÕ

i is a nm-dimensional vector and
s

ú
j = ((sj

1)ú
, . . . , (sj

n)ú) (where (sj
k)ú is defined above). Thus one can rewrite pki, cti and sky

w.r.t the new form of si (with its representation as the vector-of-polynomials). Meaning that,

pki = Èa, súÍ–i + Èa, sÕ
iÍ, sky =

ÿ

i

yis
Õ
i

cti = pkir + Èu, súÍ–i + Èu, sÕ
iÍ + fi + Âq/KÊx

b
i1R

Gú
5 : is similar to the game G4, except that, the product Èu, súÍ is replaced with a uniform

polynomial u
Õ. To prove the indistinguishability of Gú

4 and Gú
5, we use the ring version of

LHL from Theorem 2. In particular, if the mapping fa,u(x) = ( a
u ) is surjective, then for

properly selected parameters with k = 2, the theorem provides that values Èa, súÍ and Èu, súÍ
are statistically indistinguishable from uniformly random (uÕ

, u
ÕÕ). We have,

|AdvFE
A,Gú

5
(Ÿ) ≠ AdvFE

A,Gú
4
(Ÿ)| Æ ∆[( a

u ) , ( a
u ) s

ú; U((R2◊m
q )ú

, R2
q)] · (1 ≠ p

ú) + p
ú
,

where p
ú is the probability that fa,u is not surjective and ∆ can be set through Theorem 2 for

k = 2 and m Ø 3. Note that fa,u is not surjective only if u = sa for a scalar s œ Zq, due to the
fact that both u and a have invertible elements. Thus p

ú = negl(Ÿ).

Advantage of the adversary in game Gú
5: similar to the discussion in the last game for

sel-IPFE (Theorem 3), one can see game Gú
5 is independent of bit b and the advantage of the

adversary in this game is zero.

Indistinguishability among adaptive versions Gú
3, Gú

4 and Gú
5: The complexity leveraging
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(CL) technique is a common way to lift the security from selective to the adaptive by guessing
the challenge in advance, though this would be possible with the cost of losing a factor of security
depending on the size of message space. Thus, when CL is used alongside a computational
assumption, it can be used only for a small message space. In our security proof we use CL
only for games Gú

4, Gú
5 where no computational assumption is used. More precisely, thanks to

the statistical argument in these game one can set the statistical distance (by proper choice of
parameters) such that the e�ect of message-space size in CL can not decrees the security-amount.

Now, lets Gi and Gú
i stand for the adaptive and selective versions of the corresponding

games, respectively, where i = 3, 4, 5.

AdvFE
A,Gi

(Ÿ) Æ B
2¸
x AdvFE

Aú,Gú
i
(Ÿ) by CL ∆

|AdvFE
A,Gi+1(Ÿ) ≠ AdvFE

A,Gi
(Ÿ)| Æ B

2¸
x |AdvFE

Aú,Gú
i+1

(Ÿ) ≠ AdvFE
Aú,Gú

i
(Ÿ)| i = 3, 4

Note that one can control the statistical distance via setting the parameters such that |AdvFE
Aú,Gú

i+1
(Ÿ)≠

AdvFE
Aú,Gú

i
(Ÿ)| Æ ‘(2Bx)≠2¸. Then we would have, |AdvFE

A,Gi+1(Ÿ) ≠ AdvFE
A,Gi

(Ÿ)| Æ ‘. ÙÛ

5.1 Parameters Setting for adaptively-secure IPFE

Here we overview the requirement for the parameters in our adaptively-secure IPFE scheme.
Correctness. Requires lBy(

Ô
Ÿ‡3 + mnŸ‡1‡2) < Âq/2KÊ and q >> K > lBxBy.

Transition from G1 to G2. Needs ‡3 = (m + 1)‡2, ≈‡2In,‡2In Ø ÷‘(Zn) with ‘ = 2≠Ÿ and also
all the parameter setting from mhe-RLWE assumption i.e., ‡

Ò
1 ≠ 1

‡2
2
(‡nC

Ô
l + 2)2 > ÷‘(Zn+n¸)

where ÎsiÎŒ , ÎeiÎŒ Æ C and ‡ is the parameter for the hardness of RLWE with m samples.
By Lemma 6 in Appendix A.2, one can set C =

Ô
Ÿ‡1.

Transition from G3 to G4. Needs ‡1 Ø
Ô

¸2Bx‡
Õ for non-negatives ‡

Õ where ‡1, ‡
Õ
, satisfy

≈À,‡Õ2–––T ––– Ø ÷‘(Zn) with ‘ = 2≠Ÿ
/nm.

Transition from G4 to G5. Needs the parameter setting from LHL: n be a power of 2 such
that Õ = x

n + 1 splits into n linear factors modulo prime q, m Ø 3, ” œ (0, 1/2), ‘ > 0,
‡

Õ Ø


n ln(2mn(1 + 1/”)/fiq
2
m + ‘

2 such that 2” + 2n 1
(q)‘n ( q2m

(qm≠1)(qm≠q) )n is negligible.

6 Practical instantiation

In this section, we demonstrate the e�ciency and practicality of our scheme with concrete
instantiations. We provide di�erent parameter sets with di�erent levels of security and strategies
for very e�cient implementation. Finally, we apply our scheme for a privacy preserving machine
learning application of identifying digits from encrypted images. The implementation is publicly
available at https://github.com/josebmera/ringLWE-FE-ref.

6.1 Implementation

Similar to other RLWE based schemes, the two major components of our scheme are polynomial
multiplication and noise sampling. However, from the computational point of view the most
challenging task here is to e�ciently implement multiple polynomial multiplications and multiple
sampling of secret and error polynomials which grow linearly with ¸. Here, we describe our
approach for e�cient implementation of these components, all running in constant-time.
Discrete Gaussian sampling: Our scheme uses discrete Gaussian distribution to sample error
and secret vectors. A non-constant-time sampler leaks sensitive information about these secret
vectors that can break the cryptosystem. There are three choices for constant time sampling i)

https://github.com/josebmera/ringLWE-FE-ref
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linear-searching of CDT (Cumulative Distribution Table) table [14], ii) bit-sliced sampler [26],
and iii) constant-time binary sampling [50]. The first two methods are very e�cient for smaller
(< 10) standard deviations but do not scale very well for larger standard deviations. Moreover,
they need di�erent tables or minimized Boolean expressions for di�erent samplers. One can use
convolutions to first sample from smaller distributions and then combine them to generate a
sample from a distribution with larger standard deviation [41]. However, this method is less
e�cient compared to the constant-time binary sampling described by Zhao et al. [50]. In this
method, to generate a sample from D‡, first a sample from a base distribution x

RΩ D
+
‡0 is

generated. Next, an integer k is fixed such that ‡ = k‡0 and a integer y is sampled uniformly
from [0, · · · .k ≠ 1]. Finally, a rejection sampling on z = kx + y with the acceptance probability

p = exp(≠y(y + 2kx)
2‡2 ) is performed. It can be easily shown that the samples generated in

this way are statistically close to discrete Gaussian distribution with standard deviation ‡. To
generate a sample from D‡ a randomly generated sign bit is applied on z. The rejection sampling
is performed using a Bernoulli sampler. If the base sampling algorithm D

+
‡0 and the Bernoulli

sampler are constant-time this method runs in constant-time. In our implementation to generate
samples from ‡1 = k1‡0, ‡2 = k2‡0, and ‡3 = k3‡0, we use the constant-time Bernoulli sampler
proposed by Zhao et al. [50] for di�erent values of k and ‡. The uniform sampler has also been
updated for di�erent values of k. Finally, a linear-search based CDT sampling algorithm has
been used for the constant-time base sampler. Using the bit-sliced algorithm to instantiate the
base sampler might improve the e�ciency to some extent but we leave this as future work.
CRT representation: Due to the correctness and security constraints of our scheme, the
modulus q required in all variants of our scheme is quite large (Ø 64 bits). Similar to homomorphic
encryption implementations [46] we adapted the residual number system based polynomial
arithmetic using Chinese remainder theorem to avoid the naive and relatively slow multi-precision
arithmetic. We choose a chain of moduli q0, q1, . . . , qnp≠1 such that q = q0 · q1 · · · qnp≠1. All
the inputs, outputs, and intermediate values are stored as elements in rings Rqi instead of Rq.
As all the qi are less than 32 bits long this replaces the expensive multi-precision polynomial
arithmetic with simple and e�cient single-precision arithmetic. We only need to revert to Rq

while extracting the value d at the end of decryption operation. We use Garner’s algorithm
shown in Alg. 1 in Appendix A.5 and GNU multi-precision library to accomplish this.
Polynomial arithmetic: We use Number theoretic transform (NTT) based polynomial multi-
plication in our scheme since it is an in-place algorithm and runs in O(n log n) time complexity
where n is the length of the polynomial. Specifically, we used the NTT with negative wrapped
convolution [32] which produces the result of the multiplication reduced by 1 + x

n without any
extra memory.

For a power-of-two n and prime modulus qi, such that qi © 1 mod 2n, the multiplication
of two polynomials a, b œ Rqi can be calculated as NTT

≠1(NTT (a) ¶ NTT (b)) where NTT
and NTT≠1 are forward and inverse NTT transformations respectively and ¶ denotes the
component-wise multiplication of two vectors. Computationally, the forward and the inverse
NTT transformation are the prevalent components of the whole O(n log n) time multiplication.
We observe that one of the multiplicands, i.e. a in Setup and r in Encrypt stays same for all
the ¸ + 1 multiplications, Hence we precompute and store NTT(a) and NTT(r). This saves ¸

NTT transformations in each case. Also, the public polynomial a is random in Rqi . As NTT
transformation of a random vector is also random, we can assume the a is already in the NTT
domain.

NTT or NTT≠1 transformation algorithms require applying bit-reversal permutations before
or after each transformation. As our polynomials are quite large and the number of multiplications
is linear in ¸, this requirement induces a significant overhead. To overcome this problem we
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followed the same strategy as Pöppelman et al. [42]. We used the decimation-in-time NTT
based on Cooley-Tukey [19] butterfly as shown in Alg. 2 which requires input in normal ordering
but produces output in bit-reversed ordering. For the inverse transformation we switch to
decimation-in-frequency NTT based on Gentleman-Sande [22] butterfly as shown in Alg. 3 in
Appendix A.5, which accepts the input in bit-reversed ordering and produces the output in
normal ordering. Hence, applying these transformations in conjunction eliminates the need for
bit-reversal step.
Other: There are two common strategies to generate pseudo-random numbers in cryptographic
implementations: using extended output function like Keccak [10] or using block ciphers in
counter mode. Since our target platform is equipped with AES-NI (Advanced Encryption
Standard New Instructions), we decided to use AES in CTR mode for fast generation of
cryptographically secure pseudo-random numbers. Further, we have chosen our NTT friendly
primes qi, i œ [0, np ≠ 1] of the form 2i ≠ 2j + 1. Due to their special structure it is possible to
perform fast modular reduction similar to Mersenne primes with these primes.

6.2 Parameters and performance

We propose three sets of parameters in Table. 1 depending with di�erent values of ¸, Bx, and
By. Here we have considered the selectively secure scheme described in Section 4. We calculate
the concrete security of our scheme based on the underlying hardness of a RLWE instance. That
is, we deduce our functional encryption with parameters (n, q, ‡1, ‡2, ‡3, ¸, Bx, By) scheme o�ers
S bits of security if the the underlying RLWE instance with (n, q, ‡) o�ers S bits of security.
Here, the parameters (n, q, ‡1, ‡2, ‡3, ¸, Bx, By) and (n, q, ‡) are related to satisfy the security
constraints delineated in Section 4.2.

Performance: Table. 1 also lists the performance of di�erent operations of our scheme. We
benchmarked on a single core of an Intel i9-9880H processor running at maximum 4.8GHz fre-
quency. The code has been compiled using GCC-9.3 with optimization flags -O3 -fomit-frame-pointer

-march=native on Ubuntu 18.04.

Security
level

PQ
Security

FE
Bounds

Gaussian
Parameters

Ring
Parameters

CRT
moduli

Time
(ms)

Bx : 2 ‡1 : 33
n : 2048

Álog qË : 64

q1 : 216 ≠ 212 + 1 Setup : 26
Enc : 16
KG : 0.27
Dec : 1

Low 80 By : 2 ‡2 : 64880641 q2 : 217 ≠ 214 + 1

¸ : 64 ‡3 : 129761280 q3 : 231 ≠ 217 + 1

Bx : 4 ‡1 : 226
n : 4096

Álog qË : 81

q1 : 224 ≠ 214 + 1 Setup : 589
Enc : 381
KG : 22
Dec : 17

Medium 129 By : 16 ‡2 : 258376413 q2 : 226 ≠ 216 + 1

¸ : 785 ‡3 : 516752823 q3 : 231 ≠ 224 + 1

Bx : 32 ‡1 : 2049
n : 8192

Álog qË : 94

q1 : 231 ≠ 217 + 1 Setup : 1392
Enc : 1145

KG : 64
Dec : 39

High 267 By : 32 ‡2 : 5371330561 q2 : 231 ≠ 219 + 1

¸ : 1024 ‡3 : 10742661120 q3 : 232 ≠ 220 + 1

Table 1: Parameters and performance of the RLWE based FE scheme. The security has been
calculated using the LWE estimator tool [8].
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6.3 Evaluating a machine learning model on encrypted data

To demonstrate the e�ciency of our scheme, we use it in a real world application of FE. We
perform a task of classification with a simple machine learning model, but on encrypted data
using our IPFE. In particular, we evaluate logistic regression on MNIST dataset, recognizing
handwritten digits in images. This task involves computing 10 linear functions on a 785-
dimensional vectors, where the complexity of computation is bounded with Bx = 4 and By = 16.
See Appendix A.6 for more in depth description of the MNIST dataset.

Parameters in Table. 1 for medium level of security (129 bit of PQ Security) were chosen to
fit this use-case. Hence it takes approx. 381ms to encrypt an image (vector representation) of this
size and only 170ms to evaluate the model, i.e. we need to perform 10 decryptions to properly
classify an image. In fact, as explained in Remark 1, one can encrypt with one encryption-run
multiple images simultaneously, in our case up to 4096 images. Evaluating the model would
classify all the images at once, without a major change in the complexity.
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A Supplementary Materials

Here we present some additional materials.

A.1 Lattices

A lattice is a discrete subset of Rn which can be generated by a integer linear combination of
some vectors known as the basis. It is formally defined as follows.

Definition 5 ([40]).
– Lattice. A lattice L is a subset of Rn that it is both:

1. An additive subgroup: 0 œ L and ≠x, x + y œ L, for every x, y œ L.
2. Discrete: every x œ L has a neighborhood in Rn which x is the the only lattice point.

– Basis and dimension. Equivalently, a k-dimensional lattice L can be defined by its basis
B = (b1, . . . , bk) for bi œ Rn as:

L = L(B) =
I

kÿ

i=1
cibi : ci œ Z

J

– Minimum distance. The minimum distance of a lattice L is the length of a shortest nonzero
lattice vector: ⁄1 := minvœL\{0} ||v||
– Dual-lattice. The dual of a lattice L µ Rn is defined as: ‚L := {w : Èw, LÍ µ Z} i.e., the set
of points whose inner products with the vectors in L are all integers. It is straightforward to
verify that ‚L is a lattice.

A.2 Discrete Gaussian Distribution

In this section we gather the results needed to prove the properties of discrete Gaussian
distribution used in the paper

We have the following useful fact showing that values from a discrete Gaussian distribution
can be bounded.

Lemma 6 ([31]). For any k > 0, PrxΩD‡ [|x| >
Ô

k‡] Æ 2e
≠k/2. (one dimension Gaussian)

The following lemma explains that sampling from lattice Zn is e�ciently doable, which is the
core of our construction.

Lemma 7 ([23]). Let À be positive definite. There exists a polynomial-time algorithm for
sampling from a distribution whose statistical distance to DZn,

Ô
À is negligible, as long asÔ

À Ø Ê(log(n)).

https://doi.org/10.1007/978-3-030-17259-6_4
https://doi.org/10.1109/TC.2019.2940949
https://doi.org/10.1109/TC.2019.2940949
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Note that in [23, Theorem 4.1] the statement is a bit di�erent saying that for arbitrary
lattice L with basis B and diagonal covariance matrix ‡

2
In there exists a polynomial-time

algorithm for sampling from DL,‡, as long as ‡ Ø Ê(log(n))||B||, where ||B|| = maxi(||bi||).
The statements of the above lemma follows directly from the following reasons. Assume thatÔ

À > Ê(log(n)) and define the basis matrix B = ‡
Ô

À
≠1. Then Ê(log(n))||B|| < ‡, and by

the original statement we can sample from DL,‡, where L is defined by the basis B. Now let z

be sampled from DL,‡:

Pr[z = x1b1 + . . . + xnbn] Ã exp(≠ ||x1b1 + . . . + xnbn||2

2‡2 ).

On the other hand for w sampled from DZn,
Ô

À we have

Pr[w = (x1, . . . , xn)] Ã exp(≠ (x1, . . . , xn)T
À

≠1(x1, . . . , xn)
2 )

= exp(≠ ||x1b1 + . . . + xnbn||2

2‡2 ),

where the last equality follows from the definition of B. Hence samples from DZn,
Ô

À can be
extracted as coe�cients of samples from DL,‡.

The following is in the proof of Lemma 1. For any lattice L and positive real ‘ > 0, the
smoothing parameter ÷‘(L) is the smallest real s > 0 such that fls≠1I( ‚L \ {0}) Æ ‘.

Lemma 8 ([1, 23]). Let À be a covariance matrix. For every c œ Rn in the span of À it holds

flÔ
À(c + Zn) = flÔ

À(Zn)µc,

for some µc œ [ 1≠‘
1+‘ , 1], as long as

Ô
À Ø ÷‘(Zn).

A.3 Hardness of RLWE

The following theorem discusses hardness of RLWE and required parameters for the reduction
from SIVP to RLWE.

Theorem 5 ([33] Theorem 3.6). Let R = Z[x]/(xn + 1) where n is a power of 2, – =
–(n) Æ


log n/n, and q = 1 mod 2n which is a poly(n)-bounded prime such that Ô

–q Ø
Ê(log n). Then there exists a poly(n)-time quantum reduction from Õ(


n/–)-approximate

SIVP (Short Independent Vectors Problem) on ideal lattices8 in the ring R to solving RLWEq,‰

with l Ø 1 samples. where ‰ = DZn,‡ is the discrete Gaussian distribution with parameter
‡ = –q · (nl/ log(nl))1/4.

The following lemma is an immediate extension of our mhe-RLWE assumption from one sample
to m samples. The proof works in a similar way, except that instead of discussing based on a
single version of covariance matrices ∆

Õ, A
Õ and B

Õ we would have m versions of these matrices.

Lemma 9 (mhe-RLWE with (polynomially) many samples). One can further extend
mhe-RLWE to include m samples (ajr + fj)jœ[m]. More precisely, two following distributions
are indistinguishable.

3
(aj)jœ[m], (ajr + fj)jœ[m],

!
ei, (si,j)jœ[m], eir + gi, (si,jfj + hi,j)jœ[m]

"
iœ[l]

4

8 Here the aim is just to show that RLWE is hard. So, we avoid to recall the definition of ideal lattices.
The interested reader can see [33] for the definition of ideal lattices.
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and 3
(aj)jœ[m], (uj)jœ[m],

!
ei, (si,j)jœ[m], eir + gi, (si,jfj + hi,j)jœ[m]

"
iœ[l]

4
.

where aj , uj œ Rq are sampled uniformly, ||ei||Œ, ||si,j ||Œ Æ C, and r, fj, gi, hi,j sampled from
D”In , for i œ [l], j œ [m], as long as ‡

Ò
1 ≠ 1

”2 (‡nC
Ô

l + 2)2 Ø ÷‘(Zn+nl), where ‡ is such that
RLWE is hard with m given samples.

A.4 Proof of Lemma 5

We provide the proof of Lemma 5 used in Section 3.2.

Proof. Let A œ Rk◊m
q be chosen uniformly random. Let p denotes the probability that L(A)

contains a non-zero vector t with ||t||Œ < B = 1Ô
n

q
— . This means that A was chosen such that

there exists t = (t1, . . . , tm) œ Rm with ||tj ||Œ < B, s1, . . . , sk œ Rq, such that tj =
qk

i=1 ai,jsi

for every j œ [m]. Then p is exactly the fraction of all possible A œ Rk◊m
q for which the asserted

inequality does not hold.
We bound p by summing over all possible t(”= 0), s1, . . . , sk the probabilities pt,s1,...,sk =

Pr[’j œ [m], tj =
qk

i=1 ai,jsi] over the random choice of A. Recall that if Õ =
r

i „i where
„i are linear factors, then by CTR, we have Rq

≥=
r

i Rq/È„Í ≥= Zn
q with isomorphism r ‘æ (r

mod È„iÍ)1ÆiÆn.
We will use this to sum up probabilities:

p Æ
ÿ

0Æd<n

ÿ

h=
r

iœS
„i

S™{1,...,n}
|S|=d

ÿ

(s1,...,sk)œRk
q

gcd(s1,...,sk,Õ)=h

ÿ

tœRm

0<||tj ||Œ<B
’j,h|tj

pt,s1,...,sk

Note that in the last sum we sum only over all t œ Rm with h|tj , since if tj =
qk

i=1 ai,jsi for
some A œ Rk◊m

q and (s1, . . . , sk) œ Rk
q with gcd(s1, . . . , sk, Õ) = h, then also h|tj .

We now bound pt,s1,...,sk for any given t, s1, . . . , sk with gcd(tj , s1, . . . , sk, Õ) = h, ’j where
h =

r
iœS „i of degree d. It holds pt,s1,...,sk =

rm
i=1 ptj ,s1,...,sk where ptj ,s1,...,sk = Pr[tj =

qk
i=1 ai,jsi], since A is sampled uniformly random, thus its columns are sampled independently.

Since Rq
≥= Zn

q , equation tj =
qk

i=1 ai,jsi can be seen as n equations over Zq, each of the
form tj =

qk
i=1 ai,jsi mod „¸, where Õ =

rn
¸=1 „¸. To determine the probability that such

equations hold, we need to determine how many possible solutions these equations have (with
aij as unknown). For ¸ /œ S, there is a si such that si mod „¸ ”= 0, so equation tj =

qk
i=1 ai,jsi

mod „¸, ¸ /œ S, has precisely q
k≠1 solutions in (Rq/È„iÍ)k, since one of the variables can be

expressed w.r.t others. On the other hand, for ¸ œ S, we have si mod „¸ = 0 for all i œ [k] and
consequently tj =

qk
i=1 ai,jsi mod „¸ = 0 meaning that every a1,j , . . . , ak,j is a solution. Thus

in this case there are q
k solutions. Now putting together and by the fact that |S| = d, we have

q
(k≠1)(n≠d)+kd solutions for tj =

qk
i=1 ai,jsi mod Õ.

pt,s1,...,sk =
mŸ

i=1
pti,s1,...,sk Æ

mŸ

i=1
(q

(k≠1)(n≠d)+kd

qkn
) = 1

qm(n≠d)

It was proved in [48, Lemma 8] that if d Ø —n, there is no tj divisible by h of degree d (as
defined above) such that ||tj ||Œ Æ B = 1Ô

n
q

— , and that for d < —n there are at most (2B)n≠d

possible tj .
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For h =
r

iœS „i, |S| = d, there are q
n≠d possible sj œ Rq such that h|sj . Clearly the number

of all possible S ™ {1, . . . , n} is 2n. Thus we can bound:

p Æ 2n max
dÆ—n

q
k(n≠d)(2B)m(n≠d)

qm(n≠d)

Since n Ø 4, it follows 2B = 2 1Ô
n

q
— Æ q

— . This implies

p Æ 2n max
dÆ—n

1
q(m≠k≠—m)(n≠d) = 2n 1

q(m≠k≠—m)(n≠—n) ,

where the last equation follows since m ≠ k ≠ —m > 0, which can be easily checked using
— = 1 ≠ k

2m ≠
Ô

k2+4m‘
2m . Moreover, putting the value of — in the last bound, we get the claimed

result. ÙÛ

A.5 Algorithms for CRT and NTT based multiplication

We describe the algorithms for our CRT and NTT based multiplication. Alg. 1 describes the
general Garner’s or inverse CRT algorithm. Note that when the qi’s are constant as in our
implementation, the calculation of CRT constants Ci’s from line 2-5 can be precomputed.

Algorithm 1: Garner’s algorithm for Chinese remainder theorem
input : A positive integer q =

rt

i=1 qi > 1, with gcd(qi, qj) = 1 for all i ”= j and
v(x) = (v1, v2, · · · , vt) such that X © vi mod qi for all i.

output : x such that X = x mod q

1 for (i = 2; i Æ t; i + +) do

2 Ci = 1;
3 for j = 1; j Æ i ≠ 1; j + + do

4 u = q
≠1
j mod qi;

5 Ci = u · Ci mod qi;
6 u = v1; x = u;
7 for (i = 2; i Æ t; i + +) do

8 u = (vi ≠ x) · Ci mod qi;
9 x = x + u ·

ri≠1
j=1 qj

10 return x

Forward and inverse NTT : Algorithm 2 and 3 describe two algorithms we have used in our
implementation for forward and reverse NTT transformations.

A.6 Use-case description

One of the main tasks of machine learning (ML) is the classification of data based on their
feature vectors describing the instances. FE can allow to use ML functionality while preserving
the privacy of the data. In particular, it allows to evaluate ML models on encrypted data,
revealing only the end result of the classification.
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Algorithm 2: Forward NTT transformation using Cooley-Tukey method
input : A vector a = (a[0], a[1], · · · , a[n ≠ 1]) œ ZqÕ

n in standard ordering, where q
Õ is a prime

such that q © 1 mod 2n and n is a power of two. A precomputed table Ârev œ Zn
qÕ

storing powers of Â in a bit-reversed order
output : a Ω NTT(a)

1 t = n;
2 for (m = 1; m < n; m = 2m) do

3 t = t/2;
4 for (i = 0; i < m; i + +) do

5 j1 = 2 · i · t;
6 j2 = j1 + t ≠ 1;
7 S = Ârev[m + i];
8 for (j = j1; j Æ j2; j + +) do

9 U = a[j];
10 V = a[j + t] · S;
11 a[j] = U + V mod q

Õ;
12 a[j + t] = U ≠ V mod q

Õ;

13 return a

Algorithm 3: Inverse NTT transformation using Gentleman-Sade method
input : A vector a = (a[0], a[1], · · · , a[n ≠ 1]) œ ZqÕ

n in bit-reversed ordering, where q
Õ is a prime

such that q © 1 mod 2n and n is a power of two. A precomputed table Â
≠1
rev œ Zn

qÕ

storing powers of Â
≠1 in bit-reversed order

output : a Ω INTT(a)
1 t = 1;
2 for (m = n; m > 1; m = m/2) do

3 j1 = 0;
4 h = m/2;
5 for (i = 0; i < h; i + +) do

6 j2 = j1 + t ≠ 1;
7 S = Â

≠1
rev[h + i];

8 for (j = j1; j Æ j2; j + +) do

9 U = a[j];
10 V = a[j + t] · S;
11 a[j] = U + V mod q

Õ;
12 a[j + t] = (U ≠ V ) · S mod q

Õ;
13 j1 = j1 + 2t;
14 t = 2t;
15 for (j = 0; j < n; j + +) do

16 a[j] = a[j] · n
≠1 mod q;

17 return a

A well known ML example is a dataset named MNIST, consisting of images of handwritten
digits that needs to be recognized. Each image is a 28 ◊ 28 pixel array, where each pixel is
represented by its gray level, and the task is to classify it into one of 10 possible classes (digits).
We chose this dataset since it has been used before in the context of FE [35,45]. While state
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of the art ML models can provide even 99% accuracy on this task, FE allows computing only
limited functions. In our case the prediction has to be done through linear functions which is
known as the logistic regression. Such a model can achieve up to 92% accuracy.

To be more precise, 10 linear functions, whose coe�cients need to be learned in advance, are
evaluated on ¸ = 785 dimensional vectors (one dimension is added for the bias of the model).
Each function is indicating how likely the corresponding digit is in the image. Since the inputs
have to be integers, the data and the model have to have discrete values and not floats. Having
inputs of the vectors (grayscale) from interval [0, 4] (bound Bx = 4) and coe�cients from [0, 16]
(bound By = 16) su�ces that the accuracy of the model does not significantly change.
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