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Abstract

We propose a model which uses the exchange rate of Bitcoin against the US

dollar to predict the computing power of Bitcoin network. We show that free entry

places an upper-bound on mining revenues and we devise a structural framework

to measure its value. Calibrating the model’s parameters allows us to accurately

forecast the evolution of the network computing power over time. We find that at

most one third of seigniorage income was dissipated in electricity consumption.

The model indicates that a slowdown in the rate of technological progress will sig-

nificantly increase Bitcoin’s carbon footprint.
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1 Introduction

Bitcoin is the first payment system that operates without a central authority. Its pro-

tocol replaces trusted third parties with a network of computers, commonly referred

to as "miners", that guarantees the immutability of past transactions. Miners com-

pete for the right to add blocks of new transactions to the public ledger. Winners are

rewarded with freshly minted bitcoins. Hence, as the value of Bitcoin skyrocketed,

so did the resources devoted to mining. What started as a hobby for a few miners us-

ing their personal computers, eventually blossomed into an industry which consumes

around 0.3% of the world’s electricity through its network of mining farms, each one

of them operating thousands of machines specially designed for mining.1

The runaway growth of Bitcoin’s carbon footprint is widely perceived as one of the

most convincing argument against its long-run sustainability. Since the amount of

electricity allocated to mining is increasing in Bitcoin price, it seems that the currency

cannot appreciate much further without causing intolerable environmental damage.2

Assessing the robustness of this prediction requires a proper understanding of the fac-

tors that shape the relationship between Bitcoin price and miners’ investment in com-

puting power. For instance, if price stability discourages miners entry, Bitcoin could

very well stabilize at a higher price than today without triggering an increase in energy

consumption. To rule out this scenario, a structural model of the mining industry is

needed.

We provide such a framework by devising a dynamic model that accurately captures

the evolution of miners’ computing power. Our model builds on the following two key

elements. First, investment in mining hardware cannot easily be reversed: hardware

have little to no resale value because they become obsolete very quickly, and, from

2014 onward, have no use outside of the market for Bitcoin mining since they have

been optimized for this task only. Second, miners face a lot of uncertainty about future

revenues due to the tremendous volatility of Bitcoin price. This combination gener-

ates a range of inaction where expected revenues are too low to justify entry, yet still

sufficient to prevent incumbents from exiting the market.

The main challenge for our analysis is that we cannot consider the problem of each

1See, among other sources, digiconomist.net/bitcoin-energy-consumption .
2In one of the most pessimistic forecast, Mora et al. (2018) argue that, if Bitcoin adoption continues

unabated, it could push global warming above 2 Celsius degrees within the next three decades.
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miner in isolation or treat revenues as exogenous. Instead, we have to take into ac-

count how returns are endogenously determined by the number of active miners. A

key insight of our model is that Bitcoin protocol generates revenues functions that are

decreasing in aggregate capacity, thereby ensuring that the market for mining behaves

as a competitive industry.

Combining the exchange rate of Bitcoin against the US dollar ( B/$) with the total

computing power of Bitcoin network, we construct a new measure for miners’ pay-

offs. Our model predicts that miners buy hardware only when this measure reaches

a reflecting barrier. Payoffs never exceed the barrier because new entries push them

down by triggering additional increases in mining costs. The characterization of the

equilibrium is complicated by the fact that mining hardware benefits from a high rate

of embodied technological progress. We show how one can adapt the canonical model

of Caballero and Pyndick (1996) to account for this trend, and prove that the entry bar-

rier decays at the rate of technological progress.

We calibrate the model and find that it forecasts remarkably well how miners re-

spond to changes in the price of Bitcoin. The accuracy of our simulations is a testa-

ment to the fact that miners operate in an environment where perfect competition is a

good approximation of reality, whereas trade in most industries is usually impeded by

regulations, local oligopolies and search frictions.3 By contrast, the market for Bitcoin

mining verifies many properties that are often assumed but rarely verified in practice.

First, free entry holds because mining is an unregulated activity with a streamlined set

of tasks. Anyone can buy the appropriate hardware online and join the mining race.

Second, there is little heterogeneity among miners since they all face the same prob-

lem and earn the same rewards. Third, the mining technology exhibits returns to scale

that are constant by nature because Bitcoin protocol ensures that the odds of finding

new coins remains proportional to the size of one’s investment. Fourth, the elasticity

of revenues with respect to the network computing power is commonly known be-

cause it is encoded in Bitcoin protocol, and is therefore observable by all parties. The

conjunction of all these features is extremely rare, if not unique. It makes the market

for Bitcoin mining a perfect laboratory for models of industry dynamics, especially

since all transactions are public, giving anyone access to perfectly clean and exhaus-

tive data.

3See, for instance, Collard-Wexler (2012) for an analysis of local oligopolies in the ready-mix concrete

industry and how they respond to demand fluctuations; or Buchholz (2017) for a characterization of

the dynamic spatial equilibrium of taxicabs in New-York city.
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Although our baseline model is fairly accurate in the medium to long run, it some-

times temporarily deviates from the data. To identify the origins of these deviations,

we devise and calibrate a series of extensions. First, we allow for discontinuities in

miners’ rewards that take into account the reductions in the monetary creation rate

which are triggered by Bitcoin protocol every four years. Second, we introduce a time-

to-build and show that it explains the sluggish response of miners to sudden surges in

Bitcoin price. Third, instead of assuming that investment is completely irreversible,

we endow miners with the options to mothball or scrap their hardware. This exten-

sion enables us to match the rare instances where the network’s computing power de-

creases. Most importantly, it also allows us to disentangle the investment costs from

the operating costs, indicating that at most one third of seigniorage income was dis-

sipated in electricity consumption. Comparing our calibrated costs to available data

about the price of mining hardware, we find that they are consistent. Finally, we al-

low for congestion effects and non-linearities in the adjustment cost function at the

industry level. This extension is required to fit the data during Bitcoin’s 2017 bubble.

It shows that the increase in the demand for mining hardware triggered by the bubble

was so massive that it stretched the manufacturing capacity of hardware producers.

This resulted in a spectacular increase in the price of hardware which prevented en-

trants to flood the market.

Having established the accuracy and robustness of our framework, we use it to in-

vestigate the impact of monopoly power, and to build forecasts about the energy con-

sumption of Bitcoin. Studying the impact of each parameter, we find that Bitcoin’s

carbon footprint is likely to increase, principally because of a slowdown in the rate of

progress of the mining technology.

Since Bitcoin clears and settles transactions through the organization of a two-sided

market, our analysis is relevant to the study of platform adoption. On one side of

the market, users hold and exchange bitcoins while, on the other side of the market,

miners maintain the functionality of the decentralized ledger. From the standpoint of

service providers, Bitcoin and, for instance, Uber fulfill a similar function: they both

organize competition among Bitcoin miners or Uber drivers.

Calibrating our structural model enables us to identify which actors have been able

to extract most of the rents, or seignorage income, generated by Bitcoin. In contrast

to platforms that charge monopoly fees for their intermediation, Bitcoin ensures that
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revenues are passed on to miners.4 Since we find that the behavior of miners is consis-

tent with free entry, our results substantiate the notion that two-sided platforms can

create competitive conditions among service providers by relying solely on price sig-

nals. Hence miners channel the income generated by Bitcoin towards the producers of

their input factors, namely hardware manufacturers and electricity suppliers. We find

that the manufacturers of mining hardware were able to extract most of the rents due

to their monopoly power. The distribution of rents from Bitcoin mining therefore fol-

lowed a similar pattern as that from the Californian gold rush during which, according

to Clay and Jones (2008), most of the profits were reaped by individuals who pursued

other occupations than mining. Moreover, the rents of hardware manufacturers have

recently been eroded by the entry of new competitors. According to our model, this

loss of market power did not benefit miners who continued to operate in a competitive

environment. Instead, it reallocated part of the seignorage income towards electricity

providers, and so resulted in an increase in the energy consumption of Bitcoin.

Related literature.— Our paper uses insights from the literature on irreversible in-

vestment to contribute to the nascent field of cryptoeconomics. Bitcoin was created a

decade ago when Nakamoto’s paper (Nakamoto, 2008) was made public on October

31st 2008. It did not immediately attract much attention and it took a few years for

Bitcoin to become the focus of academic research. Early works analyzed the reliabil-

ity of Bitcoin network (Karame et al., 2012; Decker and Wattenhoffer, 2013). Reid and

Harrigan (2012) examined the anonymity of users, which enabled Athey et al. (2017) to

quantify the different ways bitcoins are used and Foley et al. (2018) to precisely iden-

tify illegal Bitcoin users. Grunspan and Pérez-Marco (2017) and Bowden et al. (2018)

both corrected mathematical approximations made by Nakamoto in his seminal pa-

per.

It is only recently that papers studying the economic implications of cryptocurren-

cies have started to emerge. Most articles focus on the monetary implications of Bit-

coin. Schilling and Uhlig (2018), Biais et al. (2018) and Hong et al. (2017) study the

interactions between fiat money and Bitcoin, providing formulas for the fundamen-

tal value of Bitcoin and testing their implications. Observing the plethora of existing

cryptocurrencies, Fernández-Villaverde and Sanches (2016) characterize the condi-

tions under which currency competition is economically viable and efficient. Gandal

4See Huberman et al. (2017) for a thorough description of Bitcoin protocol as a "monopoly without a

monopolist".
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et al. (2017) analyze exchange rate manipulations, while Chiu and Koeppl (2017) as-

sess the calibration of the parameters that underlie Bitcoin’s design. Cong and He

(2018) question the disclosure of information which results from the use of public

blockchains.

A series of recent papers is more closely related to our research since they study the

market for mining. Rosenfeld (2011), Houy (2016) and Biais et al. (2017) investigate

miners’ incentives to behave cooperatively, as expected in Bitcoin protocol, or to play

"selfish". Ma et al. (2018) model the market for mining as a game between miners.

Cong et al. (2018) study the rise of mining pools which allow miners to share their

computing power in exchange of a fair allocation of the mining rewards. Although

Cong et al. (2018) find that mining pools do not necessarily undermine the decen-

tralization of Bitcoin’s network, they stress that risk sharing significantly escalates the

arms race among miners. We bypass risk diversification by considering that miners are

risk neutral, a specification which can be rationalized as describing the current state of

the industry where pooled mining has become the norm. Alsabah and Capponi (2019)

identify another force that intensifies the arms race: When R&D is endogenous, higher

investments in research translate into a more aggressive mining game. Even though

we take the evolution of the mining technology as given, we characterize in Section

6.1 the impact that market concentration has on the computing power deployed by

miners. Finally, Huberman et al. (2017) analyze how users set their fees and how their

decisions impact electricity consumption. They raise concerns about the sustainabil-

ity of Bitcoin in the long-run, when miners will be rewarded in transaction fees only.

Our paper also models the market for mining but unlike aforementioned articles,

we focus on miners’ entry decisions. We show that their behavior can be captured

using real options theory. Since it would be impossible to cover all the major contri-

butions to this field, we refer to Dixit and Pyndick (1994) for a broad overview, as well

as to Thomas (2002), Caplin and Leahy (2010) and Bachmann et al. (2013) for more

recent surveys of the literature on industry dynamics. Our model being devised in an

equilibrium setting, it builds on the seminal work of Bertola and Caballero (1994) and

Caballero and Pyndick (1996). We find that, despite its apparent novelty, the market

for Bitcoin mining behaves very much like a standard industry. Our analysis illustrates

that it is a perfect laboratory for real options theory because miners solve a common

problem, whose parameters are publicly observable.

Structure of the paper.— The article is organized as follows. Section 2 lays out the
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baseline model along with two extensions. Section 3 presents the data and explains

how we calibrate the models described in the previous section. Section 4 relaxes the

irreversibility assumption and shows how the investment costs can be disentangled

from the operating costs. The 2017 bubble is analyzed in Section 5. The implications

of our findings are discussed in Section 6, while Section 7 concludes. The proofs of the

Propositions and some additional results are relegated to the Appendix.

2 Equilibrium Models

We propose a framework that takes the demand for bitcoins as given. We use the tra-

jectory of Bitcoin exchange rate against the US dollar, i.e. the dollar nominal price

of Bitcoin, to predict the computing power of the network. Explaining how Bitcoin

achieves decentralization is beyond the scope of this paper. Hence we only cover the

elements that are required for the understanding of our model, namely the tasks ac-

complished by miners and the rewards they get in return. We refer readers interested

in a more comprehensive treatment to Nakamoto (2008) and Antonopoulos (2014).

2.1 Baseline Model

The mining technology.— The main challenge for a decentralized currency is to main-

tain consensus among all participants in order to prevent double spendings. To avoid

such conflicts, transactions are bundled together into blocks which are then incre-

mentally appended to the public ledger. Producing a valid block is made so difficult,

that the average time it takes to build a block is much longer than the time it takes for a

block to propagate across the network. This ensures that, in most instances, the whole

network agrees on which transactions are included in the ledger.

The resulting data structure is called a Blockchain because blocks are cryptograph-

ically chained according to their dates of creation. Bitcoin miners continuously com-

pete for the right to add the next block of transactions. To win the competition, min-

ers have to stamp the header of their block with a "proof-of-work".5 Generating a valid

proof-of-work boils down to finding an integer, known as nonce, such thatS(header) ≤
s, where s is an arbitrary threshold and S is a hash function. Hash functions are such

5Each block possesses a header, which contains both a nonce and a set of statistics that summarizes the

transactions contained in the block, the time the block was built and the header of the previous block.
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that the only way to find a valid nonce is to randomly hash guesses until the above

condition is met.6

The value of the threshold s determines the difficulty of finding a valid block, which

we denote by D. The target s can be adjusted so that every computed hash will lead

to a valid block with probability 1/D. The probability that a hash yields a valid block

is, for all practical purposes, independent of the number of trials already done. This

memory-less property implies that the event of mining a block is captured by a Pois-

son process.7 The Poisson arrival rate λ(h,D) = h/D is linear in the number, h, of com-

puted hashes per period or hashrate, a requirement known as fairness in the computer

science literature.

We normalize the length of a period to 10 minutes and set the hashrate of each

miner equal to one hash per period. Let Qt denote the total hashrate of the network,

i.e. the overall number of mining units currently competing for the next block. Since

fairness implies that the mining technology exhibits constant returns to scale, the av-

erage waiting time between blocks is equal to λ(Qt, Dt)
−1 = Dt/Qt. To ensure that

block generation proceeds at a steady pace, the difficulty of the hashing problem is

adjusted by the network until new blocks are created on average every ten minutes.

Given our normalization, this objective is attained when λ(Qt, Dt) = 1, so thatDt = Qt.

In practice, the hashrate of the network Qt is not observable. Bitcoin circumvents

this problem by relying on an adaptive expectation algorithm. Every two weeks on

average, Bitcoin protocol uses the block generation rate over the last 2016 blocks to

infer the average value of Q during the previous period. Then the difficulty param-

eter is adjusted until it matches the estimated value of Q. This updating procedure

guarantees that, if the network hashrate does not deviate too much from its estimated

average, the block generation rate will remain close to its target of 10 minutes. Since

we devise our model in continuous time, assuming that difficulty is adjusted period-

ically would greatly complicate the analysis, making it impossible to derive tractable

results. This is why we slightly idealize the actual protocol by assuming that Dt is con-

tinuously adjusted.8 We verify in the Technical Appendix D that the number of blocks

mined every day mostly remained within the confidence interval centered on the pro-

tocol’s target. In other words, the block generation rate was not significantly different

6This property is often referred to as puzzle-friendliness in the cryptographic literature.
7See the Technical Appendix A and Rosenfeld (2011) for a derivation.
8From a formal standpoint, this hypothesis is equivalent to assuming that Qt is observable and that D

is set equal to Q with a delay ε, so that Dt+ε = Qt. Our model arises in the limit as ε converges to zero.
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from one block every 10 minutes, and so did not deviate much from the idealized state

that would prevail under Assumption 1.

Assumption 1. The difficulty parameter Dt is continuously updated and set equal to

the current network hashrate Qt, so that Dt = Qt for all t.

Miners’ revenues.— Building a valid block is costly in terms of hardware and elec-

tricity. Miners are compensated when they win the competition: The first miner who

finds a valid block earns a predetermined amount of new coins (12.5 bitcoins at the

time of writing), and the sum of the fees granted by the transactions included in the

block. Whereas the amount of new bitcoins is fixed by the protocol, fees are freely

chosen by users. So far transaction fees have accounted for only 2.1% of average block

rewards. We use Rt to denote the block rewards in dollars, i.e. the B/$ exchange rate

multiplied by the sum of new coins and fees. Then, as shown in the Technical Ap-

pendix A, the flow payoff Pt of a miner is equal to the block rewards, Rt, times the

Poisson arrival rate, 1/Dt, of a valid block9

Pt = Rt/Dt. (1)

Under Assumption 1, the flow payoff is given by an isoelastic function of the network

hashrate

Pt = Rt/Qt. (2)

The microfoundation of (2) is rather unique since the decreasing relationship between

revenues and industry capacity does not stem from the satiation of consumers’ de-

mand, but is instead generated by the increase in mining costs encoded in Bitcoin

protocol.

We do not attempt to endogenize the demand for bitcoins, and thus take its ex-

change rate against the dollar as given. Following much of the literature on irreversible

investment, we assume that revenues follow a Geometric Brownian Motion (GBM

hereafter).

9We implicitly assume that miners value the block rewards at the current market price of Bitcoin. This

premise is consistent with Schilling and Uhlig (2018) since they show that agents should be indifferent

between holding bitcoins or dollars. Actually, miners are more likely than other agents to favor dollars

because they have already tied up the value of their investment to that of Bitcoin. Hence, converting

their Bitcoin rewards into fiat currency allows them to hedge part of their investment risk. In practice,

miners have to wait on average 16 hours and 40 minutes, i.e. 100 blocks, before being able to transfer

their newly earned coins.
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Assumption 2. The block rewards (Rt)t≥0 follow a Geometric Brownian Motion so there

is an α ∈ R, and a σ ∈ R+, such that

dRt = Rt (αdt+ σdZt) , (3)

where (Zt)t≥0 is a standard Brownian motion.

Given that newly minted coins account for the bulk of block rewards, changes in

R are almost fully proportional to changes in Bitcoin price. The GBM specification

is consistent with the equilibrium pricing formula for bitcoins of Schilling and Uh-

lig (2018). The stochastic term captures the martingale component arising from the

"exchange rate indeterminacy result" of Kareken and Wallace (1981); while the deter-

ministic trend is proportional to the correlation between the pricing kernel and the

price of Bitcoin. As we will see below, the estimated α are always positive, which indi-

cates that the pricing kernel and Bitcoin price were negatively correlated. Additional

factors were probably at work during our period of study because Schilling and Uh-

lig (2018) focus on the equilibrium situation where Bitcoin is used as a medium of

exchange. Whether or not this is true today remains open to debate, but most peo-

ple would agree that Bitcoin was not widely used as a medium of exchange during its

adoption phase. Then, as shown by Biais et al. (2018), the rate of return on Bitcoin was

compensating investors for the risk of hacks. Biais et al. (2018) also provide a justifi-

cation for our geometric specification as transactional benefits are proportional to the

price of Bitcoin, a property that distinguishes cryptocurrencies from other assets and

which yields a pricing equation with a multiplicative structure.

The GBM specification narrows down the class of equilibrium prices, by requiring

that they exhibit independently and normally distributed returns with constant vari-

ance. Assessing these requirements, we do find that returns are not linearly autocor-

related, and that their distribution is well approximated by a normal distribution (see

Technical Appendix E). However, we also find that tail events are too common, and

that the volatility of returns varies over time. These shortcomings of the GBM model

are not specific to Bitcoin but common to most financial assets. Yet, GBM processes

are still widely used to price assets because they provide a reasonable first-order ap-

proximation, while being much more convenient to handle than Lévy processes. We

adopt this pragmatic approach, and leave the study of more complex price processes

to further research.

Knowing the law-of-motion followed by the reward process is not sufficient to com-
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pute the expected payoffs because they also depend on the hashrate of the networkQ,

whose level is endogenously determined. To solve for the equilibrium, one has to si-

multaneously derive the process followed by Q and the entry policy of miners.

Market entry.— Mining is a costly activity. To operate a unit of hashpower bought

at time τ , miners incur the flow operating cost Cτ .10 The electricity consumption of

mining hardware accounts for the bulk of the operating costs.11 The costs vary with the

vintage of the hardware because they benefit from embodied technological progress,

as newer machines are able to perform more hashes with the same amount of energy.

We assume that investment in mining hardware is irreversible, and explain why this

is a reasonable premise in Section 3.1. As a first approximation, we also assume that

miners cannot turn their hardware off, a simplifying assumption that will be relaxed

in Section 4.

Assumption 3. Once installed, mining hardware cannot be switched off so as to save

on operating costs.

Assumption 3 implies that the value of a unit of hashpower of vintage τ reads

V (Pt, τ) = Et
[∫ ∞

t

e−r(s−t)Psds

]
− Cτ

r
, (4)

where r is the yearly discount rate and t ≥ τ .12 We consider that all the miners of a

given vintage face the same problem. In practice, operating costs may differ across

locations but only those miners that have access to the cheapest sources of electricity

will find it profitable to enter the market.

Entrants have to buy a unit of hardware whose price we denote by It. Both invest-

ment and operating costs decrease over time because hardware becomes more effi-

cient. Let At measure technological efficiency, so that buying At units of hashpower

at date t costs the same amount than buying one unit of hashpower at date 0. For

10The hashpower measures the number of hashes that can be performed per period.
11We implicitly assume that the price of electricity remains constant. It is easy to relax this restriction by

lettingC also depend on the current date t. However, changes in electricity costs can be safely ignored

in the empirical analysis because they are dwarfed by variations in Bitcoin exchange rate.
12See the Technical Appendix A for a derivation of (4). It is straightforward to generalize (4) to include an

exogenous rate at which hardware breaks down. We do not take it into account because its calibration

returns non significant values. Intuitively, failures seem to occur at a much slower rate than techno-

logical obsolescence since we do not observe that the network hashrate decreases in the absence of

market entry.
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the reasons explained below, we assume that technological improvements accrue at a

constant pace, i.e. At = exp(at) with a > 0.

Assumption 4. Machines become more efficient at the constant rate a > 0. Hence the

investment and the operating costs satisfy It = I0/At = exp(−at)I0 and Ct = C0/At =

exp(−at)C0.

Anyone can enter the mining race: All that is required is to buy the mining hard-

ware, and to connect it to a steady supply of electricity. Hence free entry is likely to

prevail, ensuring that

It ≥ V (Pt, t) = Et
[∫ ∞

t

e−r(s−t)Psds

]
− Ct

r
, for all t. (5)

When new miners enter the market, (5) holds with equality. Since the exchange rate

follows a Markov process, it is natural to conjecture that miners’ decisions will only

depend on the current realization of P : Whenever payoffs reach some endogenously

determined threshold P t, a wave of market entries will ensure that the free entry con-

dition (5) is satisfied.

To see why such a mechanism defines a competitive equilibrium, it is helpful to

decompose the law of motion of P . Reinserting (3) into (2) and using Ito’s lemma, we

find that

d log(Pt) =

(
α− σ2

2

)
dt+ σdZt − d log(Qt). (6)

Payoffs are decreasing inQ because the response of the protocol to an increase in total

hashrate is to raise the difficulty parameter, thus making it less likely for each miner

to earn a reward. This is why free entry places an upper bound on payoffs. Their value

can never exceed a threshold P t as more miners would find it profitable to enter the

market, which would push payoffs further down.

Industry equilibrium.— So far, the main takeaway from our analysis is that the mar-

ket for mining can be described as a standard industry because Bitcoin protocol gen-

erates a cost function that is increasing in aggregate capacity. We define a competitive

equilibrium as a symmetric Nash equilibrium in entry strategies. If all other miners

follow a policy of entry at P t, no individual miner can find it optimal to follow any

other policy.

Definition 1 (Industry equilibrium).

An industry equilibrium is a payoff process Pt and an upper barrier P t such that:
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(i) Pt ∈ [0, P t].

(ii) The network hashrate Qt increases only when Pt = P t.

(iii) The free entry condition (5) is satisfied at all points in time, and it holds with equal-

ity whenever Pt = P t.

Conditions (i) and (ii) ensure that entry keeps Pt below the entry barrier P t; while

condition (iii) ensures that no individual miner will find it profitable to deviate from

the entry policy. Conjecturing the properties of the equilibrium greatly simplifies the

analysis since we only have to verify that they are indeed satisfied by the entry strate-

gies. From a formal standpoint, the fundamental difference between our equilibrium

and the one studied by Caballero and Pyndick (1996) is that, due to embodied tech-

nological progress, the investment and the operating costs decrease over time. Hence

the entry barrier P t cannot remain constant. However, if we impose Assumption 4, so

that mining efficiency improves at a constant rate, we can solve for the equilibrium in

the space of detrended payoffs and recover a flat barrier.

Proposition 1. Assume that assumptions 1, 2, 3 and 4 hold. Then there exists an indus-

try equilibrium
(
Pt, P t

)
such that Pt is a GBM reflected at P t = P 0/At where13

P 0 =
(r − α)β

β − 1

[
I0 +

C0

r

]
, and β =

σ2

2
− α− a+

√(
α+ a− σ2

2

)2
+ 2σ2 (a+ r)

σ2
> 0. (7)

A typical equilibrium is illustrated in Figure 1. The upper-panel reports an arbitrary

sample path for the payoff process (Pt)t≥0. Payoffs follow the changes in block rewards

and thus behave as a GBM until they hit the reflecting barrier P t. Such events trigger

market entry, as shown in the lower-panel. The resulting increase in hashrate raises

the difficulty of the mining problem, and so pushes payoffs down until market en-

try is not anymore profitable. The entry barrier decreases at the rate of technological

progress because it corresponds to the pace at which both investment and operating

costs fall over time.

Comparative statics.— To get some intuition about the impact that each parame-

ter has on the entry barrier, it is useful to consider the hypothetical situation where

further entries are precluded. Then the marginal miner is also the last one to ever en-

ter the market. Provided that r > α, the value of the last entrant is positive whenever

13Note that, when α = r, P 0 =
(
I0 +

C0

r

) (
α+ a+ σ2

2

)
.
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Figure 1: Industry Equilibrium

P0 > P
last

0 ≡ (r−α) [I0 + C0/r].14 Comparing the thresholds with and without entry, we

see that P 0 = [β/(β − 1)]P
last

0 > P
last

0 . The break-even payoff is higher under free entry

because the arrival of new miners ensures that future payoffs are reflected downwards

when they reach the entry barrierP 0. The term β/(β−1) measures the negative impact

that entries have on the value of the marginal incumbent.

Differentiating the expression of P 0 in (7), we find that ∂P 0/∂a > 0 and ∂P 0/∂r > 0.

If technological progress accelerates, miners’ revenues shrink more rapidly because

there will be even more entries in the future. Hence entrants have to earn more early

on, which raises the entry barrier. A similar mechanism explains the impact of r since

future revenues are discounted at a higher rate when r goes up. Not surprisingly,

an increase in the average growth rate α of the block rewards incentivizes entry as

∂P 0/∂α < 0. Finally, the volatility of payoffs σ discourages entry since ∂P 0/∂σ > 0.

Note that this is not due to an increase in the value of waiting because the perfectly

competitive structure of the industry rules out such an option: Competitors would

preempt any procrastination beyond the zero expected profit threshold. Instead, the

negative impact of σ on entry is mechanical. Given that payoffs are truncated from

14If market entry is forbidden, Pt obeys the same law of motion as Rt so that

V last0 =

∫ ∞
0

e−rsE0 [Pt] dt−
[
I0 +

C0

r

]
=

P0

r − α
−
[
I0 +

C0

r

]
.
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above by the reflecting barrier, an increase in their spread automatically lowers their

expected value. Quantitatively, the rate of technological progress a has, by far, the

largest effect on P 0.

2.2 Extensions

We now generalize our model so as to take into account the delivery lags for mining

hardware, and the halving of block rewards every four years.

Time-to-build.— We have assumed that miners can enter the market immediately.

In practice, however, new hardware have to be delivered and installed. Each step in-

creases the lapse of time separating entry from actual production. When it requires δ

years to effectively become operational, prospective entrants at date t have to forecast

their revenues starting from t+ δ. Hence they have to take into account the price fluc-

tuations that may ensue during the delivery period, as well as the amount and arrival

times of hardware in the delivery pipeline.

To reduce the dimensionality of the state space, we follow the approach proposed

by Grenadier (2000). Let Ht denote the amount of "committed hashrate", that is all

the mining units which are either already operational, or on their way to being de-

livered. Given that all orders will be installed δ years from now, the hashrate of the

network when today’s orders become operational will be equal to the current amount

of committed hashrate, i.e. Qt+δ = Ht. Hence the relevant state variable from the

standpoint of entrants is not anymore Pt = Rt/Qt, but instead P δ
t ≡ Rt/Ht. We show

in the Technical Appendix L that equilibrium strategies are functions of P δ
t only, and

that the mining market is in equilibrium when P δ
t is a reflected GBM.

Proposition 2. Assume that assumptions 1, 2, 3 and 4 hold. Furthermore, assume that

market entry is delayed by the time-to-build δ. Then there exists an industry equilibrium(
P δ
t , P

δ

t

)
such that P δ

t = Rt/Ht is a GBM reflected at P
δ

t = P
δ

0/At. The entry barrier is

related to that of the model without time-to-build by the following equation

P
δ

t = e(r−α)δP t

[
Kt/K

δ
t

]
, (8)

where Kt ≡ It + Ct/r denotes the overall costs of entry in the model without delay, and

Kδ
t ≡ Kt − (1− e−rδ)Ct/r.

Proof. See the Technical Appendix L.

15



The expression of the entry barrier with time-to-build differs from that of the base-

line model in two respects. First, overall costs of entry Kδ
t are slightly lower because

they are evaluated at the time of the entry decision. Since entrants have to wait δ

years to start mining, their operating costs Ct/r are multiplied by the discount fac-

tor e−rδ. Second, the barrier without delay is rescaled by e(r−α)δ because it is opti-

mal to enter when the expected value of payoffs in δ years is equal to the discounted

threshold, erδP t. Since Et [Pt+δ] = eαδP δ
t , setting Et [Pt+δ] = erδP t indeed implies that

P δ
t = e(r−α)δP t.15

Note, however, that the models with and without delays are not as similar as their

descriptions might suggest. The solution of the baseline model is Markovian since

knowing the current hashrate and Bitcoin price is enough to forecast the evolution of

the network hashrate. By contrast, the solution of the model with time-to-build is path

dependent since forecasts over the next δ years are conditional on all the purchase

orders that were placed over the previous δ years.

Halvings.— Another limitation of our baseline model is that it ignores the inclusion

in Bitcoin protocol of a feature which divides by two the number of coins issued per

block. These so-called halvings are triggered every 210,000 blocks to ensure that the

supply of bitcoins converges to a finite limit, namely 21 millions. Halvings generate

discontinuities in the paths of Rt that are inconsistent with the GBM specification. To

take them into account, one has to replace Assumption 2 with Assumption 5 according

to which block rewards are halved every four years.

Assumption 5. The block rewards are given by Rt = htR̃t. R̃t follows a GBM while ht =(
1
2

)bt/4c
, where t measures the number of years elapsed since the inception of Bitcoin,

and bxc = max
n∈N
{n ≤ x}.

Assumption 5 slightly simplifies the halving process. First, the reward a miner gets

when she finds a block is not exactly divided by two after each halving because it in-

cludes transaction fees on top of new coins. But the discrepancy is not very important

in practice, as transaction fees account for a residual share of block rewards. Second,

halvings do not occur every four years, but instead every 210,000 blocks. Counting

15The relationship between the expectation of Pt+δ and P δt holds true because Qt+δ = Ht, so that

Et [Pt+δ] = Et
[
Rt+δ
Qt+δ

]
=

Et [Rt+δ]
Ht

= eαδP δt .
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years is a way to approximate elapsed time because Bitcoin protocol adjusts the diffi-

culty of the hashing problem every two weeks on average. It is shown in the Technical

Appendix D that, indeed, the updating rule manages to keep the block generation rate

close to one every 10 minutes.

Halvings render the optimization problem of miners non-stationary: the closer they

are to the halving date, the lower their expected payoffs. This implies that we have

to rely on numerical methods because the entry barrier does not anymore admit a

closed-form solution. Starting from the analytical solution derived in the proof of

Proposition 1, we proceed by backward induction and use a finite-difference proce-

dure to approximate the entry rule. As the horizon increases, our algorithm quickly

converges towards an entry barrier that is independent of the number of future halv-

ings.16

3 Calibration

3.1 Data

We now show that feeding our model with exchange rate data allows one to accurately

predict the evolution of the network hashrate. For this purpose, we need to infer the

miners’ payoffs Pt = Rt/Qt. Remember that the numerator, Rt, is equal to the value

of new coins plus the transaction fees. The number of created coins per block is spec-

ified by the protocol while Bitcoin exchange rate against the dollar is directly avail-

able from coindesk.com.17 The transaction fees are recorded in Bitcoin’s blockchain

and can easily be retrieved from btc.com. Thus all the components of Rt are readily

available. By contrast, the network hashrate Qt is not directly observable. It must be

estimated using the theoretical probability of success and the number of blocks found

each day. Given that we are not primarily interested in statistical inference, we rele-

16More precisely, the entry barrier turns out to be stable after four iterations. We use finite-difference

methods to approximate the Hamilton-Jacobi-Bellman equations satisfied by the value functions of

miners. We rely on the implicit Euler scheme in order to ensure that the approximation is stable. The

system of linearized equations is solved using a generalization of the Gauss-Seidel iterative method

known as the successive-over-relaxation method.
17There are many different exchanges and the exchange rate varies a bit across them. In the Technical

Appendix C, we check the validity of coindesk data by comparing them to a weighted average measure

over 17 exchanges. Since the two series are virtually indistinguishable, we select the one that is most

easily accessible.

17
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Figure 2: Miners Revenues R and Network Hashrate Q

NOTE: Rt IS COMPUTED USING INFORMATION COLLECTED ON COINDESK.COM AND

BTC.COM. Qt IS MEASURED IN TERAHASH PER SECOND. ITS VALUE IS INFERRED USING

THE PROCEDURE DESCRIBED IN APPENDIX F.

gate the description of our estimation procedure to the Technical Appendix F and save

on notation by using Qt to denote our estimate, although its time series only approxi-

mates the true hashrate. We show in the Technical Appendix F that the approximation

is accurate. We update the value of Qt on a daily basis and, since there are on average

144 blocks mined every day, the expected payoffs per day are given byPt = 144×Rt/Qt.

We report the series followed by Rt and Qt in Figure 2. There is a clear correlation

between the two variables. Our model suggests that their structural relation should

become apparent if one takes the ratio of the two series and detrend it at the rate of

technological progress a. Then the resulting series should behave as a reflected GBM.

A natural guess for the rate of progress is Moore’s law according to which processor

speed doubles every two years. We actually expect improvements in the mining tech-

nology to outpace those in processing speed because miners came up with a series

of innovations which allowed them to leverage their computing power. Thus we will

refine our guess later on by calibrating the value of a. Yet it is instructive at this ex-

ploratory stage to use Moore’s law as a benchmark.

The payoff series detrended at the rate implied by Moore’s law is reported in Fig-

ure 3. It exhibits two stationary regimes, with a break in the middle where payoffs
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Figure 3: Detrended Payoff Series

NOTE: Pt IS EQUAL TO THE DAILY NETWORK REVENUES 144 ∗Rt DIVIDED BY Qt.

decreased regularly until they reached a lower plateau. At first, this pattern does not

seem to square with our model. But if we focus on the date at which the break initiates,

we realize that it coincides with a fundamental change in the mining technology.

Early on, miners used to mine with their own computers. Around mid-2010, they

realized that Graphical Processing Units (GPU) were much more efficient. One year

later, miners started to use Field Programmable Gate Arrays (FGPA) and, since 2013,

they mostly mine with Application Specific Integrated Circuits (ASIC). ASICs are also

called mining rigs because their sole purpose is to solve Bitcoin’s hash-puzzle.

The first ASIC was delivered to Mr. Jeff Garzik on January 30th 2013.18 Since this

revolution in the mining technology boosted the rate of technological progress well

above its long-run trend, its propagation among miners violates Assumption 4, and

so, one should not expect the predictions of our model to be verified during the tran-

sitory phase. We therefore leave aside the lapse of time where miners switched from

GPUs and FPGAs to ASICs, and focus instead on the two subperiods where miners

used the same technology. More precisely, during the first period, which ranges from

2011/04/01 to 2013/01/31,19 miners mainly mined with GPUs; while they mostly relied

18See https://bitcoin.stackexchange.com/questions/40944/when-did-the-asic-mining-era-begin
19We excludes the very early history of Bitcoin because it features an unstable block generation rate (see

19
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on ASICs from 2014/10/01 onwards. Our second subperiod ranges from 2014/10/01 to

2017/03/31. It does not include our most recent data because they cover an episode of

trading frenzy during which Bitcoin experienced a giant bubble followed by a sudden

burst. We will analyze this event and its aftermath in Section 5.

Buying an ASIC is an irreversible decision because it can be used for cryptocurrency

mining only. Hence, if the price of Bitcoin falls, ASICs cannot be resold for profit be-

cause all miners face the same returns. The irreversibility assumption is less obvious

for GPUs. Yet, the calibrated values of a reported below in Table 1 show that GPUs

were facing a very high rate of obsolescence. This suggests that irreversibility is also

a sensible approximation for GPUs, as nobody would buy them second hand without

a tremendous discount. The conjecture is confirmed by the analysis in the Technical

Appendix I, where we calibrate a model with reversible investment and find that it fails

to match the data.

3.2 Calibration strategy

We calibrate the parameters for each subperiod. The baseline models is parsimonious

enough to rely on six parameters only: the deterministic trend α of rewards and their

volatility σ2, the rate of technological progress a, the discount rate r, the price I0 of one

unit of hashpower bought at time 0, and the operating cost C0 of that same unit. The

first two parameters can be directly estimated using Rt only. Under Assumption 2, the

log returns are independent and follow a normal distribution with mean µ ≡ α−σ2/2,

and variance σ2, which we estimate by maximum likelihood (see Technical Appendix

E).

The rate of technological progress, a, and the reflecting barrier, P 0, are set to mini-

mize a (pseudo)distance between the observed and the simulated paths of the hashrate.

A direct consequence of our equilibrium definition is that Qt = max
(
Qt−1,

RtAt
P 0

)
for

all t. This condition provides us with a straightforward way to simulate the hashrate

for any sample with T observations:

1. Set the initial value of the simulated hashrate Qsim
0 equal to its empirical coun-

terpart, i.e. Qsim
0 := Q0.

2. Update the simulated hashrate as followsQsim
t := max

(
Qsim
t−1,

RtAt
P 0

)
, for t = 1, . . . , T .

the Technical Appendix D).
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Since (Rt)t≥0 and Q0 are observed, the minimization procedure boils down to finding

the value of a and P 0 such that

(â, P̂ 0) ∈ argmin
(a,P 0)∈R×R+

T∑
t=1

(
Qt −Qsim

t (a, P 0)

Qt

)2

. (9)

Unfortunately, the other three parameters {r, I0, C0} cannot be separately identi-

fied. We will describe in Section 4 a model where investment is reversible, and explain

how it enables us to separate the investment cost, I, from the operating cost, C. At

this stage, the best we can do is to fix r, and recover the overall costs of entry at the

beginning of each subperiod, K0 ≡ I0 + C0/r, by equating the expression for P 0 in (7)

with the calibrated P̂ 0. The arbitrary choice for the discount rate, r, turns out to be

relatively unimportant because the term (r − α)β/(β − 1) in (7), and thus the entry

costs, are rather inelastic with respect to r.20

3.3 Results

Calibrated parameters.— The parameters resulting from our calibration strategy are

reported in Table 1, their values expressed as yearly rates whenever applicable.21 The

standard errors are obtained using block bootstrap, an estimation technique that is

more suited to time series than standard bootstrap.22

We first present the trend and volatility of the reward process. Both coefficients

are independent of the modelling strategy since they are directly estimated by maxi-

mum likelihood on the rewards series Rt. The average growth rate of rewards, µ, de-

creased a lot between the two periods of study. As one would expect, early buyers of

bitcoins earned higher returns. Information about their profits pushed the demand

for bitcoins which raised the exchange rate even more. But the extremely high re-

turns observed at the beginning became harder to sustain as the market capitaliza-

tion grew from a negligible amount, to nearly $ 20 billions by the end of our sample. In

spite of this cooling process, investing in Bitcoin remained extremely profitable. These

tremendous returns have led many observers to announce the imminent collapse of

Bitcoin.23 Whether or not such predictions will eventually be vindicated is beyond the

20In the second period, setting r = 0.2 yields K0 = $1639, while r = 0.05 yields K0 = $1934.
21For example, the calibrated values of a means that the price of a new hardware has been on average

divided by exp(a) every year during each subperiod.
22The block bootstrap procedure is described in the Technical Appendix G.
23According to the website bitcoinobituaries, by August 2019, 371 opinion pieces had predicted the

21
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scope of this paper, but our estimates for the volatility coefficient σ indicate that there

was no obvious arbitrage opportunity; investors willing to bet on Bitcoin also had to

bear a huge risk. Even though the volatility of rewards was divided by three in the sec-

ond period, its value remained an order of magnitude higher than its counterpart for

the S&P 500.24

Table 1: Calibrated Parameters

Parameters Interpretation 1st period 2nd period

A. MAXIMUM LIKELIHOOD

α Trend Rt 2.38 0.46

σ2 Volatility Rt 1.95 0.54

B. CALIBRATION Baseline Halvings Time-to-Build Baseline Halvings Time-to-Build

a Rate of TP 1.18 1.29 1.10 0.76 0.85 0.90

(0.50) (0.43) (0.42) (0.12) (0.13) (0.13)

K0 Total Costs $ 5.6 mn $ 5.3 mn $ 4.7 mn $1, 825 $1, 655 $1, 465

($ 16 mn) ($ 8.9 mn) ($ 17.8 mn) ($199) ($83) ($232)

δ Time-to-Build 11.5 days 46.5 days

(9.24 days) (27.8 days)

Note: Calibrations based on an annual discount rate r = 10%. K0 is the calibrated total cost per

Terahash-second at the first day of each subperiod. All parameters expressed as yearly rates except

the time-to-build, δ, which is expressed in days. Standard errors from block bootstrap in parenthesis.

According to Moore’s law, the price of one unit of hashpower should be divided by

two every two years. Hence it implies that the rate of technological progress a should

be close to log(2)/2 ≈ 0.35, a number well below the calibrated values of a reported

in Table 1. The mining technology progressed at a faster pace than the one predicted

by Moore’s law because miners were able to implement innovations specific to the

hash-puzzle on top of the raw increase in computing power. Our calibrated parame-

ters also indicate that the rate of technological progress slowed down considerably in

the second period, thus suggesting that improvements specific to the mining problem

became harder to unearth as the technology matured.

Comparing the parameters across models, we see that introducing halvings low-

ers the overall costs of entry, K0, but raises the rate of technological progress, a. The

decrease in K0 is quite intuitive: Since halvings lower expected revenues, free entry

death of Bitcoin.
24We find that, for the S&P 500, σ2 = 0.053 for the first period and σ2 = 0.027 for the second period
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holds when mining costs are smaller. The reason why a increases is more subtle. The

adjustment corrects the misspecification of the baseline model that leads to an over-

estimation of the hashrate around the halving dates. This is why the minimization

procedure, when applied to the baseline specification without halvings, generates a

negative bias for a because it uses this parameter to reduce the discrepancies around

the halving date.

The delivery lags of the model with time-to-build are relatively modest: 11.5 days

during the first period, and 46.5 days during the second period. As expected, the

lags are smaller during the first period since GPUs are more commonly available than

ASICs. The total costs are lower with time-to-build than without, a finding that is in

line with Proposition 2 and the impact of discounting on future profits. We also notice

that the impact of delays on the calibrated rate of technological progress is negative in

the first period, but positive in the second period. Without further data, it is difficult

to tell whether this ambiguity is structural, or simply specific to our samples.

Finally, note that the parameters are identified with much higher precision in the

second period. Three factors explain why the first period calibration is so fuzzy. First,

Bitcoin price was extremely volatile. Second, Bitcoin experienced a long slump, a pe-

riod known as the first crypto winter within Bitcoin community. This resulted in a

nearly flat hashrate for most of the sample, as can be seen in Figure 4. From the stand-

point of our calibration strategy, this means that there are relatively few data points

where free entry binds, making it difficult to pin down the structural parameters. Fi-

nally, the technology was less homogenous during the first period. In particular, it

witnessed the emergence of mining pools. Cong et al. (2018) explain why market en-

try was incentivized by this new opportunity to share risk, thus generating a positive

bias in our calibration of the rate of progress. For all these reasons, we henceforth treat

the second period as our sample of reference.

Predicted vs actual hashrate.— The calibration procedure provides us with an esti-

mate for the reflecting barrier, P 0, as well as for its trend, a. Using these two values,

we can run the two-step algorithm described above to simulate the network hashrate

Qsim. We report the simulated series against their empirical counterpart in Figure 4. In

spite of its very parsimonious structure, the baseline model tracks the actual hashrate

remarkably well.

We nonetheless notice some temporary discrepancies. The most striking is around

the second halving date (2016/07/09). This should not be surprising since miners do

23



Figure 4: Simulated vs Observed Hashrates

First Period Second Period

not anticipate halvings in the baseline specification while they certainly do in reality.

Figure 4 shows that this shortcoming is solved by the extended model with halvings.

However, besides this specific period, the paths generated by the three models remain

very close to each other. Due to the extreme volatility of the exchange rate, halvings

affected miners’ behavior only a couple of months ahead. It is actually more intriguing

that such a disconnect between the simulation of the baseline model and the data

is not apparent around the first halving date (2012/11/28). According to our model,

miners had a very short investment horizon during the first period because the rate of

technological progress was extremely high.

Another noticeable difference between the actual and simulated hashrates is that

the former sometimes decreases, especially during the first period, while the latter

never does. Our models cannot generate any decrease in hashrate because they are

based on the premise that investment is totally irreversible. We will address this short-

coming in Section 4 where we allow miners to mothball and scrap their hardware.

These discrepancies do not invalidate our approach because its objective was to

capture medium to long run adjustments in hashrate, and it largely succeeds in this

respect. Yet one may argue that such a conclusion is too generous because our pro-

cedure minimizes the distance between the simulation and the data, and so would

fit the data fairly well even if the model were misspecified. Remember, however, that

the baseline model uses only two parameters to fit times series of 608 and 913 data

points. For each simulation, we start from the initial hashrate and then let the model

run without using intermediate realizations to correct its output. Hence, any funda-
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mental misspecification would generate a noticeable gap between the simulation and

the data, at least over some time intervals. The fact that there is no deterioration of

the models’ accuracy is therefore a convincing argument in favor of their validity. We

now provide additional evidence in favor of this interpretation by performing out-of-

sample experiments, and by comparing the entry rules generated by the models with

the ones prevailing in the data.

We assess the model’s ability to match out-of-sample data by dividing the second

period into a fit period and a test period. We calibrate a and P 0 on the fit period only

and find that, even when the fit period is short, the calibrated values remain close to

the ones based on the full sample. Hence the predicted hashrate stays accurate several

years after the end of the fit period, as shown in the Technical Appendix H.

Inspecting the entry rule.— Besides assessing the accuracy of the simulated hashrate,

we can also check whether the behavior of payoffs is consistent with the entry rule. For

this purpose, we report in Figure 5 the simulated and observed payoffs series, as well

as the B/ $ exchange rate to ease interpretation. For the sake of conciseness, we only

report the payoff series of the second period.25 The upper-panel of Figure 5 focuses on

the model with halvings whose barrier shifts down by 50% on the halving date. This

drop is preceded by a period where the barrier slopes up because miners anticipate the

fall in future revenues, and so, procrastinate further before entering the market. But

the increase in the barrier becomes noticeable only a few months before the halving

and is therefore not relevant for most of the preceding period. This might be surpris-

ing given that a division by two of revenues seems like a huge loss; yet one has to put

it into perspective by comparing it to the very rapid obsolescence of hardware, and

to the extreme volatility of Bitcoin price. These two forces imply that a loss of 50% in

rewards over a few months was not an implausible event. Accordingly, as can be seen

comparing the two panels of Figure 4, the lower the rate of technological progress and

the volatility of Bitcoin, the more noticeable halvings are.

As predicted by our model, observed payoffs remain below the barrier most of the

time and tend to reflect downwards when they reach its vicinity. This is remarkable

since P t was calibrated regardless of this requirement, fitting the hashrate only. Al-

though the observed and simulated payoff series are often superimposed, they differ

over some short time intervals. These discrepancies are usually triggered by extreme

25We show in the Technical Appendix B that the fit of the payoff series during the first period is also very

convincing.
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Figure 5: Simulated vs. Observed Payoffs
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increases in the exchange rate, as can be seen comparing the upper-panel of Figure 5

with the middle-panel that contains Bitcoin price series. Quite intuitively, when the

exchange rate goes up by 10% or more in one day, miners cannot enter the market as

quickly as the model predicts because they are facing, among many other frictions,

delivery and manufacturing delays.

This conjecture is confirmed by the lower-panel of Figure 5 which reports the payoff

series with time-to-build. The simulation now almost perfectly tracks the data. In par-

ticular, sudden price increases do not anymore drive a wedge between the model and

the data. Instead, they push both series above the entry barrier for a short amount

of time. This is possible in the model with time-to-build because the entry thresh-

old acts as a reflecting barrier for the committed hashrate, Ht, and not for the actual

hashrate, Qt. Hence, a sudden increase in the price of Bitcoin triggers a jump in Ht, as

new miners decide to enter the market, but the impact of their decision is delayed by

the time-to-build. This explains why the payoff series tends to revert after a big price

surge: On impact, it follows the price trajectory, and then decreases a few weeks later,

once the mining hardware has been delivered.

To take stock, out-of-sample experiments and inspecting the entry rule confirm

that the baseline model reliably predicts the evolution of the network hashrate. Yet,

its accuracy temporarily deteriorates around halving dates and after big price surges,

two shortcomings that can be addressed by the introduction of halvings and time-to-

build. These adjustments do not strongly affect the calibrated values of the parame-

ters which remain rather stable across the three specifications. Having established the

soundness of our approach, we now consider two extensions. The first one will allow

us to separate the investment from the operational costs, while the second one will

enable us to match the 2017 bubble and its aftermath.

4 Reversible Investment

4.1 Mothballing and scrapping options

The network hashrate never decreases in our simulations because they hinge on the

assumption that miners always keep their hardware in mining mode. In practice,

miners have the option to switch off their hardware, and they can switch them back

on should mining become profitable again. We now generalize our approach to take
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these options into account. We assume that mining hardware can be kept idle at zero

costs. Then the mothballing decision is fully reversible, and as such does not involve

any forward-looking component: Machines are mining whenever their flow revenues

are higher than their operating costs. Hence the per-period profits at time t of a miner

entered at time τ are equal to max (Pt − Cτ , 0), and her value function reads

V (Pt, τ) = Et
[∫ +∞

t

e−r(s−t) max (Ps − Cτ , 0) ds

]
. (10)

If there is no technological progress, all miners pay the same operating costs (Cτ
is constant) and thus face the same problem. Then the industry equilibrium features

two reflecting barriers: an upper-barrier generated by the entry of new miners which

pushes payoffs downwards until free entry is satisfied again, and a lower barrier gen-

erated by the exit of incumbents which pushes payoffs upwards until miners are indif-

ferent between operating and stopping their hardware.26 With technological progress,

however, the structure of the industry is much more intricate. Then miners cannot

all be indifferent since they bear different operating costs. The least productive min-

ers are the first to mothball their hardware, and they do so until the marginal miner

makes zero flow profits. This endogenous cutoff depends on the distribution of vin-

tages among incumbents. Thus the law of motion of Pt is not anymore a function of

current revenues only, but also of the vintage distribution. This in turn greatly com-

plicates the decision of prospective entrants who now have to solve a problem which

includes a distribution function among its state variables.

Instead of following this direct approach, we take the view that prospective entrants

do not have access to the data required to solve the full information problem. Find-

ing the vintage of all hardware is an extremely tedious, if not impossible, task. It is

therefore quite unlikely that miners actually looked for this information before invest-

ing and, even if they did, they would only have observed a very noisy measure of the

actual distribution. We assume instead that potential entrants make their decisions

considering only the current value of their flow payoffs. We establish below the plau-

sibility of this restriction by showing that mothballing and scrapping have very little

impact on the hashrate, so that entrants cannot significantly benefit from solving the

full information problem. From a formal standpoint, we assume that miners’ expec-

tations satisfy the following Markov property.

26See Alvarez and Shimer (2011) for a model with two reflecting barriers generated by workers entry and

exit.
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Assumption 6. Let Ft ≡ σ(Ps; 0 ≤ s ≤ t) denote the filtration generated by P . We as-

sume that, for all measurable set A ∈ R+ and all s > t, Pe (Ps ∈ A|Ft) = Pe (Ps ∈ A|Pt),

where Pe(ω) is the probability of event ω as evaluated by potential entrants, andFt is the

filtration generated by Pt.

We show in the proof of Proposition 3 that, replacing Assumption 3 with Assump-

tion 6, does not fundamentally alter the structure of the equilibrium. It remains char-

acterized by an entry barrier P t which decays at the rate of technological progress.

Since payoffs are reflected downwards when they hit the barrier, it will never be prof-

itable to operate a piece of hardware which is so obsolete that its operating costs ex-

ceed the entry barrier. A typical mining cycle is illustrated in Figure 6: Hardware are

mothballed whenever payoffs fall below its operating costs, as indicated by the colored

area; and they are scrapped when the entry barrier crosses the operating costs.

Proposition 3. Assume that assumptions 1, 2, 4 and 6 hold true. Then there exists a

P 0 > 0 such that
(
Pt, P t = P 0/At

)
is an industry equilibrium that satisfies the require-

ments of Definition 1.

Simulating the hashrate.— The addition of an exit threshold makes it impossible to

analytically solve for the entry barrier P t. Moreover, simulating the hashrate is more

complicated than for the baseline model because one must keep track of the operat-

ing costs, as well as of the activity status of all miners. The inputs of the algorithm

are the block rewards Rt, the rate of technological progress a, the initial hashrate, the

operating costs and the entry barrier
(
Q0, C0, P 0

)
.27

The simulation procedure works as follows. For each day, we start by deleting from

the database all miners whose operating costs are bigger than the entry barrier since

they will never find it profitable to mine in the future. Then, given the new value ofRt,

we compute the temporary payoff faced by miners if the hashrate remains constant.

Depending on its value, two configurations may arise. First, if this temporary payoff is

smaller than the operating costs of the least efficient–i.e. oldest–active miner, we know

27We also need to initialize the vintage distribution of all active miners. In line with Assumption 6, we

find that knowing the true distribution of miners’ vintages does not significantly improve forecast

accuracy. A series of robustness checks demonstrates that the initial choice of vintages hardly affects

the simulated paths after a couple of days. We therefore pick a distribution for which the mass of

miners of any vintage is inversely proportional to the price of their hardware, as would have happened

if the environment were deterministic.
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Figure 6: Mothballing and Scrapping Regions

that some miners should switch off their hardware. Thus we let the least efficient min-

ers mothball their hardware, and update the temporary payoff until no active miner

prefers to remain idle. Alternatively, if the temporary payoff is higher than the operat-

ing costs of the most efficient inactive miner, we know that some miners should switch

on their hardware. Finally, if all incumbents are active and the temporary payoff is still

bigger than the entry barrier, we let new miners enter the market until the temporary

payoff is equal to the entry barrier.

Predicted vs actual hashrate.— As before, we calibrate a, P 0 andC0 so as to minimize

the distance between the simulated and actual hashrates. Figure 7 reports the result-

ing series along with the prediction of the baseline model. As expected, the model with

exit fits the data better whenever the hashrate falls. But the improvement is rather

marginal because significant decreases were exceptional. Most of the time the pre-

dictions of the two models coincide, thus substantiating our claim that Assumption

3 is a reasonable benchmark. Adding reversibility does not fundamentally affect the

hashrate trajectory because of the very high rate of technological progress. Scrapping

is profitable for mining rigs that were purchased a few years ago, but they have be-

come so obsolete that they only account for a negligible share of the network hashrate.

Yet, pretending that investment is irreversible is not totally innocuous. It leads to an

overestimation of the lifetime operating costs since, in practice, all mining rigs are

eventually turned off. Having a framework that takes this option into account makes

it possible to correct the cost bias.
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Figure 7: Simulated vs Observed Hashrates

First Period Second Period

4.2 Disentangling investment from operating costs

We now explain how one can use the model with reversible investment to disentangle

the price of mining hardware from their operating costs. The simulations reported in

Figure 7 show that miners who ignored the impact of mothballing and scrapping deci-

sions were nonetheless able to make accurate predictions about the network hashrate.

Thus we strengthen Assumption 6 and consider that entrants disregard the rare in-

stances where the hashrate shrinks.

Assumption 7. When forming their expectations, potential entrants ignore the impact

that mothballing and scrapping have on the network hashrate.

Entrants who base their expectations on the premise that incumbents will remain

operational can disregard the vintage of the technology operated by other miners.

Thus Assumption 7 implies Assumption 6, although the converse is not true. Assump-

tion 7 ensures that agents expect payoffs to follow a reflected GBM as in the baseline

model. Knowing the distribution ofP allows us to infer the expectations of prospective

entrants. In particular, equation (10) is compatible with free entry if and only if

It ≥
∫ +∞

t

e−r(s−t)

(∫ P s

0

max (y − Ct, 0) f ePs|Pt (y) dy

)
ds, for all t, (11)

where f ePs|Pt (·) denotes the distribution, as anticipated by entrants, of Ps conditional

on Pt. For brevity, we relegate the explicit expression of f e to the Technical Appendix
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J. Using the calibrated values of a, P 0 and C0 to evaluate the integral on the right-hand

side of (11) yields the investment cost I0 consistent with free entry. Moreover, con-

dition (11) also places an upper bound on the overall costs of entry paid by miners.

Let T denote the time it takes for the entry barrier to reach the operating costs of en-

trants. Given that the entry barrier decays at the rate of technological progress, we

have T = log
(
P 0/C0

)
/a. The total costs paid by miners who entered at time 0 must

necessarily be inferior toK0 = I0+
∫ T
0
C0e

−rtdt because they will never find it profitable

to mine after date T .

Table 2: Calibration with and without Exit

Parameter Interpretation 1st period 2nd period

Baseline Exit Baseline Exit

a Rate of TP 1.18 1.15 0.76 0.76

(0.50) (0.44) (0.12) (0.12)

P 0 Barrier 25996 23858 5.30 5.05

(25843) (19811) (0.66) (0.64)

K0 Overall Costs of Entry $5.6× 106 $4.8× 106 $1,825 $1,581

(1.6× 107) (2.6× 107) (199) (220)

C0 Daily Operating Costs $2,767 $0.68

(1332) (0.38)

I0 Price of Mining Rig $3.1× 106 $1,002

(2.5× 107) (444)

T Maximal Mining Time 1.87 years 2.65 years

Note: Calibrations based on a an annual discount rate r = 10%. I0, C0 and K0 correspond to a one-

Terahash per second hardware at the first day of each subperiod. Standard errors from block bootstrap

in parenthesis.

Table 2 contains the parameter values resulting from these computations along

with their counterparts for the baseline calibration. The overall costs of entry are lower

in the model with exit than in the baseline model. This is not surprising because min-

ers now have a finite horizon. Given that costs are smaller, entries happen sooner,

which translates into a lower entry barrier.

Comparing calibration to price data.— Overall costs are made of two components:

the initial purchase of mining hardware and the daily operating costs. Assumption 7
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allows us to disentangle them. Their values are reported in the fourth and fifth lines

of Table 2.28 In both subperiods investment costs amount to around two thirds of the

overall costs of entry. Hence all seignorage income was not spent on electricity, as

often argued, but instead largely captured by mining rigs producers.

The plausibility of our calibrated parameters can be assessed by comparing them

to online data on the selling price of mining hardware. To the best of our knowledge,

there is no official source for hardware characteristics and availability dates. We there-

fore retrieved our data from different websites, selecting those which offered the most

reliable information, namely Bitcoin wiki and the Bitcoin forum. We collected data on

state-of-the-art mining hardware at the time they were put on the market.29 We fo-

cused on the post-2014 period because there is too much uncertainty around the type

of hardware that was used before the introduction of ASICs.

Figure 8 reports the electricity consumption and market price of hardware, along

with the price series predicted by the model.30 It indicates that our calibration of the

cost of investment and of the rate of technological progress are consistent with on-

line data. Besides supporting the parameters resulting from our calibration strategy,

Figure 8 also validates Assumption 4 according to which the price of mining hardware

and their energy consumption should decrease at the same rate. There is, however,

a specific time window where the assumption fails to hold: Between August 2017 and

February 2018, the price of mining rigs skyrocketed from around $2,000 to $5,200. This

temporary increase was triggered by the concurrent bubble in Bitcoin price. We now

explain how our model can be modified to capture this temporary deviation from the

long-run trend.

5 The 2017 Bubble and its Aftermath

So far we have restricted our attention to pre-2018 data. We have excluded recent ob-

servations because Bitcoin experienced a period of trading frenzy during the winter of

2017: From three thousand dollars in September 2017, Bitcoin exchange rate shot up

28The calibrated value for I0 depends on r which we set equal to 0.1. However, our results are not very

sensitive to the choice of r because the obsolescence process is so fast that miners do not operate

their hardware for a very long time. For example, r = 0.05 yields I0 = $1033 in the second period,

while r = 0.2 yields I0 = $943.
29The online data and their sources are reported in the Technical Appendix K.
30We extrapolate the model’s prediction to cover all the sample where online price data are available.
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Figure 8: Calibrated vs Observed Rate of Technical Progress

to nearly twenty thousand in December, and then, dropped back to six thousand in

February 2018. This bubbly episode raises a significant challenge because it led to a

structural break in the relation between the exchange rate and the network hashrate.

As shown in Figure 9, if the relation had remained stable, the hashrate should have

been five times higher than its actual value at the peak of the bubble. The discrep-

ancy between the observed hashrate and the one that would have resulted from our

frictionless model is explained by three different factors.

First, market entry was constrained by the manufacturing capacity of ASICs pro-

ducers. In May 2017, there were approximately 230,000 active mining rigs. Between

May and December 2017, the B/$ exchange rate was multiplied by 12. To keep up

with this pace, approximately 2,700,000 new mining rigs would have had to be in-

stalled within eight months only. Such a dramatic increase was bound to stretch the

capacity of Bitmain, the main manufacturer of ASICs for Bitcoin mining. Second, Bit-

main exercised his monopoly power and decided not to flood the market with new

hardware in order to raise their selling price. Indeed, the price of an Antminer S9 min-

ing rig was multiplied by three between the beginning and the climax of the bubble,

and then divided by around four during the following crash.31 Third, as the bubble

collapsed within a few months only, prospective miners simply cancelled their orders

or backtracked on their decision to enter the market.

We take these constraints into account by assuming that investment costs are not

31See Technical Appendix K.
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constant but increasing in aggregate investment. More precisely, let qt denote the flow

of entrants at date t, so that Qt = Q0 +
∫ t
0
qsds. The investment costs for the marginal

entrant are now given by

I (qt;Qt, At) =
I0
At

[
1 +

(
qt
bQt

)η]
, for I0, b ∈ R+, and η > 1. (12)

Congestion externalities are captured by the convex function on the right-hand side

of (12): An increase in the flow of entrants, qt, stretches manufacturing capacities, thus

raising the cost of entering the market. The parameter η controls the convexity of the

cost function.32 As η increases, I converges towards an hyperbolic function with an

asymptote at bQt. Hence, one can think of bQt as the production capacity of ASICs

manufacturers, which is assumed to be proportional to the number of operational

units.

For brevity, the derivation of the optimal entry rule under (12) is relegated to the

Technical Appendix M. We demonstrate that, as in the baseline model, entry is a func-

tion of Pt only, and that there exists a threshold P 0 such that dQt = 0 whenever Pt <

P t = e−atP 0. However, P t is not anymore a reflecting barrier. Due to the convexity of

the cost function, aggregate investment is now absolutely continuous with respect to

time.33 Whenever Pt > P t, an Hamilton-Jacobi-Bellman equation, whose solution can

be numerically approximated, pins down the positive relationship between qt and Pt.

We include the most recent observations and select, as before, the parameters that

minimize the distance between the simulated hashrate series and its empirical coun-

terpart. We also include online price data for mining hardware in our set of targeted

moments. This enables us to identify the convexity parameter η since it controls the

elasticity of the hardware price with respect to aggregate investment.34

Figure 9 shows that the baseline model vastly overestimates entry during the bub-

bly episode, and then, due to the irreversibility of past investment, remains well above

the actual hashrate for the rest of the sample. By contrast, calibrating the model with

convex costs enables us to match the hashrate over the full sample. The lower-panel

which reports the normalized price series, Ĩt = AtIt, indicates that the simulated in-

vestment costs are also in line with the data. As predicted by the baseline model, the

investment costs decrease at the rate of technological progress, thus generating a flat

32In particular, note that I (qt;Qt, At) is isomorphic to our baseline specification when η = 0.
33By contrast, aggregate investment was a singular control process in the baseline model with dQt being

(infinitesimally) positive only on a measure-zero set of time points.
34See the Technical Appendix M for further details on the calibration procedure.
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Figure 9: Model with Convex Costs
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profile when they are normalized. There is, however, a notable exception during the

height of the 2017 bubble, where the investment costs increased dramatically. This

means that the marginal cost function (12) is essentially flat until it nears the thresh-

old bQt, and starts to increase exponentially.

The calibrated parameters are reported in the legend of Figure 9. The value b = 3

implies that the congestion externality becomes relevant solely at very high rates of

investment amounting to a twentyfold annual increase in the network hashrate. The

calibration η = 14.1 confirms that the cost function is indeed extremely steep in the

vicinity of bQt. This explains why the bubble triggered a sudden burst in the cost of

entry which prevented miners to flood the market during the bubbly episode. Inter-

estingly, our calibration demonstrates that, even in the face of an event as extreme

as Bitcoin bubble, one does not to need to abandon the efficient market hypothesis

by assuming, for instance, that miners refrained from investing because they antici-

pated the incoming crash. Instead, we find that their behaviour is explained by large

variations in the price of their main input factor.
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6 Discussion

Having established the accuracy of our framework, we use it to address the questions

that motivate our analysis. First, is Bitcoin design really generating a competitive en-

vironment for its mining industry and, if so, which actors were able to appropriate

Bitcoin’s seigniorage income? Second, what forecasts can we draw about the evolu-

tion of Bitcoin’s carbon footprint?

6.1 Revenues allocation

Oligopolistic industry.— Although we cannot reject the premise that miners operate

under perfect competition, our results do not prove that the premise is true either.

One should be careful when interpreting our findings because, as first established by

Grenadier (2002), a similar entry rule can hold even when the industry is oligopolistic.

More precisely, assume that, instead of being populated by a continuum of atomistic

miners, the market is controlled by n symmetric firms. Then, provided that assump-

tions 1, 3, 2 and 4 hold, there exists a symmetric Nash equilibrium where each firm

increases its mining power when Pt reaches the trigger level P
n

t = e−atP
n

0 . As in the

baseline model, Pt is a GBM reflected at P
n

t , where

P
n

0 =
n

n− 1

β(r − α)

β − 1
Kn

0 , and Kn
0 = I0 +

C0

r
. (13)

Given that we identify the entry barrier without relying on the model, our cali-

bration strategy returns the same threshold independently of whether the industry is

competitive or not. The degree of competition matters at the second stage, when we

infer the cost parameters that are consistent with the barrier. Setting (7) equal to (13),

we find that the costs in the oligopolistic and competitive models are proportional

as Kn
t = [(n− 1)/n]Kt. Calibrated costs are lower when the industry is oligopolistic

because firms are able to extract some rents.

We can easily construct an intuitive measure for the oligopolistic rents. First, note

that the net present value of an additional unit of hashpower is equal to W (Pt) −Kn
t ,

where W (Pt) ≡ Et
[∫∞
t
e−r(s−t)Psds

]
denotes the expected value of discounted payoffs.

The expectation operator forP does not depend on the degree of competition because

it does not affect the calibrated barrier. Hence, free entry is satisfied in the baseline

model if and only if W (P t) = Kt. It follows that if we evaluate the net present value
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of entrants and divide it by the overall costs of entry, we find that the option premium

reads35

Option Premium =
W (P t)−Kn

t

Kn
t

=
1

n− 1
.

As expected, when n goes to infinity, the option premium converges to zero so that

free entry holds. The option premium rapidly decreases in the number of competitors.

For instance, the option premium is below 10% of expected revenues if, as suggested

by Alsabah and Capponi (2019), more than 10 mining firms are competing. Inciden-

tally, our model unambiguously rejects high degrees of concentration, with n equal or

smaller than 4, since they would imply that the overall costs of entry are smaller than

the market price of mining hardware.

Input producers.— Since miners are not able to extract significant rents, they chan-

nel most of their income towards the producers of their input factors, namely hard-

ware manufacturers and electricity suppliers. As large mining farms are scattered

around the globe (with major hubs in China, North-America, and Scandinavian coun-

tries), evaluating their impact requires a geographic analysis that would go well be-

yond the scope of this paper. Rauchs et al. (2013) provide the most comprehensive

survey of mining locations but, as far as we know, no study has yet used their data to

assess the effect that mining has on the revenues of local electricity providers.

By contrast, the production of ASICs was, until recently, a very concentrated ac-

tivity, with Bitmain claiming a market share of 74.5% of 2017 sales revenues. In their

2018 application proof for an IPO on the Hong Kong Stock Exchange,36 Bitmain in-

dicated that it had been able to generate $952.6 million in profits out of $2.5 billion

in revenues, thus reporting an healthy profit margin of 37.8% in 2017. To put these

numbers into perspective, the overall seigniorage income generated by Bitcoin over

the same year was equal to $3.18 billion. Hence, in line with our findings, all seignor-

age income was not spent on electricity, but instead largely captured as a monopoly

rent by ASICs manufacturers. The quasi-monopolistic position enjoyed by Bitmain

was finally contested in 2018 by the arrival of new competitors. In particular, Halong

Mining, which uses chips produced by Samsung, entered the market in March 2018,

35Given that the mining technology exhibits constant returns to scale at the aggregate level, the op-

tion premium is not well defined when n = 1, that is when the market for mining is controlled by a

monopolist.
36Prospectus available at http://templatelab.com/bitmain-ipo-prospectus/. Note that Bitmain was

drawing part of its revenues from proprietary mining and mining services. Yet hardware production

accounted for the bulk of Bitmain’s activity, namely 90% of its overall revenues.
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proposing a mining rig called DragonMint 16T that was 30% more efficient than the

previous state of the art. The entry of this new competitor triggered a dramatic drop in

the price of Bitmain’s product, as can be seen in Figure 19 in the Technical Appendix

K.

6.2 Electricity consumption of Bitcoin

The erosion of Bitmain’s dominant position is lowering the cost of entering the mining

market. At the same time, price data indicate that Bitcoin is providing lower returns

and not exhibiting as much volatility as in the past. We also expect the rate of tech-

nological progress to slow down and converge, in the best case scenario, to the value

predicted by Moore’s law. What will be the impact of these ongoing changes on Bit-

coin’s electricity consumption? Having a structural model enables us to answer this

question in a quantitative manner.

The entry barrier fully characterizes the industry dynamics for any price trajectory.

Most of the time, however, payoffs will be below the barrier. Thus we need to evaluate

the payoffs probability distribution in the no-entry region. Fortunately, the ergodic

distribution of reflected Brownian motions admits a closed-form solution. In order

to apply it to our setting, we first notice that the detrended payoff, P̃t ≡ PtAt, is a

GBM reflected at P 0. Then it is well known (see for instance Grenadier (2002)) that

P̃t has a long-run stationary distribution whenever α + a > σ2/2, a condition which

is comfortably satisfied by our calibrated parameters. Using fP̃ to denote the ergodic

density of P̃ , we find that, for all y ∈ (0, P 0],

fP̃ (y) =
γ

y

(
y

P 0

)γ
, where γ ≡ 2 (α + a− σ2/2)

σ2
.

In contrast to P̃ , the network hashrate, Q, follows a non-stationary process, and

thus fails to have long-run distribution. Yet, a simple change-of-variable allows us to

compute the steady-state distribution of Q conditional on R and A, as

fQ(Q;R,A) = fP̃

(
P̃ (Q,R,A)

) ∂P̃ (Q,R,A)

∂Q

= −γQ−(γ+1)

(
RA

P 0

)γ
.

Integrating fQ over the consistent values of Q finally yields its conditional mean

E[Q;R,A] =

∫ RA
P0

∞
QfQ(Q;R,A)dQ =

(
γ

γ − 1

)
RA

P 0

. (14)
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Figure 10: Impact of Parameters on Hashrate
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The electricity consumption of the network is inversely proportional to the efficiency

parameter A. Hence
E[Q;R,A]

A
=

(
γ

γ − 1

)
R

P 0

(15)

is the best guess one can make about the long-run energy requirements of Bitcoin.

Since (15) is linearly increasing in block rewards, our model confirms the widely held

belief that halvings will lower Bitcoin’s electricity consumption. Our contribution con-

sists in characterizing the slope of the relation betweenR andQ. Figure 10 reports the

impact of the parameters on the conditional expectation of Q, as well as on its value

at the entry barrier. For readability, we set R and A equal to one. We also normalize to

one the average value ofQ generated by the calibrated parameters. Hence, all changes

can be interpreted as percentage deviations from the calibrated model.

First we lower a from its calibrated value to the one consistent with Moore’s law. The

results reported in the north-west panel of Figure 10 show that a decrease in the rate of

technological progress significantly raises the average hashrate. As hardware becomes

obsolete at a lower pace, miners are able to devote a greater share of their income to

operating costs. Not surprisingly, the growth rate of block rewards, α, has a positive

impact on the level of investment as more miners find it attractive to enter the mar-
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ket. The impact of the volatility coefficient, σ, is more intriguing since it has opposite

effects on the entry barrier and average hashrate. When σ increases, miners are more

reluctant to enter the market because they anticipate that large negative shocks are

more likely to leave them burdened with excess mining power.37 This added disper-

sion is what drives apart the conditional expectation and entry barrier in the south-

west panel of Figure 10. As these opposite effects partially compensate each other, σ

has a positive but relatively modest effect on the average hashrate. Finally, we report

the impact of a decrease in the selling price of mining hardware I. We use Bitmain’s

2017 profit margin of around 30% as an upper-bound on the price correction. When

hardware become cheaper, miners enter the market in greater numbers and devote

more of their resources to electricity consumption.

Finally, our framework predicts that energy requirements are increasing in the de-

gree of competition among miners. Let En[Q;R,A] denote the conditional expectation

of Q when the mining market is oligopolistic with n symmetric firms. Reinserting (13)

into (14), we find that an increase in the number of competing firms n raises the net-

work hashrate since En[Q;R,A] = (1− 1/n)E[Q;R,A]. Given that normative studies

conclude that Bitcoin hashrate is too high (see for instance Huberman et al. (2017)),

encouraging concentration in the mining market is likely to increase welfare.

What lessons can be drawn from these experiments regarding the future of Bitcoin’s

electricity consumption? The increased competition between hardware producers

and, most notably, the decrease in the rate of technological progress will worsen Bit-

coin’s carbon footprint. For these trends to be contained, Bitcoin price will have to

stabilize, thus suggesting that the carbon footprint may eventually place a hard cap

on the price of Bitcoin.

7 Conclusion

One of the most enticing promise of Blockchains is their ability to support the main-

tenance of their infrastructure through a decentralized network. Decentralization has

received a lot of attention, becoming a byword for Blockchains and their capacity to

dislodge traditional intermediaries. Yet, the extent to which Blockchains truly achieve

decentralization remains open to debate. We address this issue by assessing whether

37Note that Q and P are negatively correlated, hence a decrease in the value of Q at the entry barrier is

equivalent to an increase in the entry barrier P .
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Bitcoin is indeed able to create a competitive market for intermediaries. To the best of

our knowledge, our paper is the first to use a structural model to answer this question,

and our conclusion is mostly positive: the confirmation and immutability of Bitcoin

transactions is guaranteed by a market that operates under competitive conditions.

Our findings should be of interest beyond the community of economists working

on Bitcoin and Blockchains. They demonstrate that Bitcoin is a remarkable example

of mechanism design on a wide scale. Bitcoin protocol encodes several features that

are rarely observed. Agents mostly face aggregate uncertainty. They operate a com-

mon technology which exhibits constant returns to scale at the micro-level, and earn

revenues that are decreasing in aggregate capacity. All these characteristics make the

mining market a perfect laboratory for models of industry dynamics, all the more so

since data are exhaustive, clean and publicly available. In particular, we show how one

can observe the entry barrier using industry-level data only. As far as we are aware, no

other industry has yet been used to construct such a direct measure, and it is therefore

reassuring that the canonical model of industry dynamics convincingly replicates the

evolution of mining capacity.

Our analysis also has normative implications that go well beyond the scope of model

testing. It supports the view that Blockchains provide a meaningful alternative for the

design of online platforms and marketplaces. The surge of the digital economy is rais-

ing ever more pressing concerns about the predatory behavior of platform owners. We

find that their market power could be mitigated through the introduction of tokens,

and the creation of markets for infrastructure maintenance. Scores of companies are

trying to emulate Bitcoin design across various sectors of the digital economy. Our

results indicate that, when properly harvested, market forces and price signals are in-

deed able to coordinate agents, thus avoiding the emergence of a monopolistic owner

in favor of a market allocation of revenues among the many stakeholders.

Finally, we believe that our findings will be of interest to Bitcoin practitioners since

our model provides a forecasting tool for investors willing to enter the mining industry.

From a practical standpoint, it has three main implications. First, the hashrate of the

network is closely related to the exchange rate and, in the event of a significant mar-

ket crash, the hashrate barely moves in the short run due to the irreversibility of past

investments. This is good news for the security of Bitcoin transactions but bad news

for their carbon footprint. Second, around two thirds of all seigniorage income was

not dissipated in electricity consumption, as often argued, but was instead spent on
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mining hardware. Third, we expect the energy efficiency of the network to deteriorate

if the rate of technological progress decelerates from the high pace it has experienced

so far.

Although our model is fairly accurate in the medium to long run, it assumes that

the environment is stationary. Since this restriction is hard to maintain over a long

horizon, a promising direction for further research would be to embed our framework

into a non-stationary environment, and allow agents to update their priors. Future

research should also strive to improve our granular understanding of the mining in-

dustry by building on the growing amount of geographical data. Finally, our modeling

strategy is likely to apply to other cryptocurrencies. Taking into account the ability

of miners to concurrently mine multiple cryptocurrencies would bring us closer to a

proper understanding of the ecosystem built around Bitcoin.
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8 Appendix

8.1 Proof of Propositions

Proof of Proposition 1 LetW
(
Pt, P t, At

)
≡ V (Pt, t)+Ct/r denote the value of an en-

trant net of operating costs as a function of the payoff Pt, the entry barrier P t and the

efficiency of the technology At. Assumption 4 requires that dAt = −aAtdt. Assump-

tions 1 and 2 imply that dPt = Pt (αdt+ σdZt) whenever Pt < P t because Qt remains

constant in that region of the payoff space. Finally, the law-of-motion of the entry

barrier P t is endogenous, and it is precisely the aim of this proof to show that the mar-

ket for mining satisfies the equilibrium requirements stated in Definition 1 when P t

decreases at the rate of technological progress. Thus we conjecture that P t = P 0/At,

with P 0 as in Proposition 1, and proceed to show that it is indeed optimal for entrants

to wait until Pt = P t.

Having specified the law of motion of the three state variables allows us to use Ito’s

Lemma to derive the Hamilton-Jacobi-Bellman equation satisfied by the value func-

tion

rW
(
Pt, P t, At

)
= Pt + αPtW1

(
Pt, P t, At

)
− aP tW2

(
Pt, P t, At

)
+ aAtW3

(
Pt, P t, At

)
+
σ2

2
P 2
t W11

(
Pt, P t, At

)
,

when Pt < P t. Assume that α 6= r,38 then the general solution of the Hamilton-Jacobi-

Bellman equation reads

W
(
Pt, P t, At

)
=

Pt
r − α

+
D1

At

(
Pt

P t

)β1
+
D2

At

(
Pt

P t

)β2
,

where D1 and D2 are constants whose values will be chosen so as to match some

boundary conditions, while β1 and β2 are the two roots of the following quadratic

equation

Q(β) ≡ σ2

2
β(β − 1) + (α + a)β − a− r = 0.

Since Q(0) = −a − r < 0 and the coefficient associated to the second order term is

strictly positive, we know that one root, β1 for instance, is strictly positive while the

other root, β2, is strictly negative.

38As r tends to α, P 0 converges to
(
I0 +

C0

α

) (
α+ a+ σ2/2

)
and W

(
Pt, P t, At

)
tends to

I0+
C0
α

At

(
Pt
P t

) [
1− log

(
Pt
P t

)]
.
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The function W has to satisfy the following three boundary conditions. First, since

Pt = 0 is an absorbing state, we must have W (0, P t, At) = 0. This implies that D2 = 0,

as otherwise the value function would diverge to either minus or plus infinity when P

goes to zero. Second, the left continuity of the value function at the entry threshold

P t implies that there can be no arbitrage opportunity solely if the value function is

flat at the contact point. This requirement, known as the smooth-pasting condition,

is satisfied when W1

(
P t, P t, At

)
= 0, i.e. when D1 = − P 0

β1(r−α) . Finally, the entry barrier

is pinned down by the free entry condition W
(
P t, P t, At

)
= It + Ct/r, which implies

that P 0 = (I0 + C0/r)
(r−α)β1
β1−1 .39 Thus we have found a solution which satisfies all the

requirements laid-out in Definition 1 for the existence of a competitive equilibrium.

Proof of Proposition 3 We proceed as in the proof of Proposition 1. We assume that

P t = P 0/At, for some P 0, and show that it is indeed optimal for miners to enter the

race when Pt = P t. The value function of an active miner entered at time τ reads

W
(
Pt, P t, Cτ

)
=
∫ +∞
t

(∫ P s
0

max(x− Cτ , 0)f ePs|Pt(x)dx
)
e−r(s−t)ds, where f ePs|Pt denotes

the density of the payoff variable at time s as anticipated by entrants at time t. Un-

der the equilibrium rule, the barrier (P s)s≥t is deterministic. This is why we do not

account for the dependency on the whole future trajectory of the barrier when defin-

ing W . We only need to show that W
(
P t, P t, Ct

)
= W

(
P 0, P 0, C0

)
/At because then

the condition W
(
P t, P t, Ct

)
= It = I0/At will be met for all t whenever P 0 is chosen

such that W
(
P 0, P 0, C0

)
= I0.

According to Assumption 6, potential entrants make their entry decisions based on

Pt and P t only. Multiplying the two variables by the rate of technological progress,

this implies that potential entrants make their entry decisions based on AtPt and P 0

only. In this detrended space, the barrier is flat. Hence, under the conjectured rule

for entry, the process AtPt anticipated by potential entrants is Time-Homogeneous

Markov, meaning that for all t, s, δ > 0, we have: f eAtPt|AsPs(y) = f eAt−δPt−δ|As−δPs−δ(y).

39Alternatively, we could have solved the planner’s problem and used the "super contact" condition

W11

(
P t, P t, At

)
= 0.
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Reinserting this equality into the definition of W , we find that

W
(
P t, P t, Ct

)
=

∫ +∞

t

(∫ P s

0

max (x− Ct, 0) f e
Ps|Pt=P t(x)dx

)
e−r(s−t)ds

=

∫ +∞

0

(∫ Pu
At

0

max (x− Ct, 0) f e
Pu+t|Pt=P t(x)dx

)
e−rudu

=

∫ +∞

0

(∫ Pu

0

1

At
max

(
y

At
− C0

At
, 0

)
f e
Pu+t|Pt=P t

(
y

At

)
dy

)
e−rudu

=
1

At

∫ +∞

0

(∫ Pu

0

max (y − C0, 0) f e
Pu+tAt|AtPt=P 0

(y) dy

)
e−rudu

=
1

At

∫ +∞

0

(∫ Pu

0

max (y − C0, 0) f e
Pu|P0=P 0

(y) dy

)
e−rudu

=
W
(
P 0, P 0, C0

)
At

.

The second equality follows from u = s − t and replacing P u+t by P u/At. The third

and fourth equalities use the change of variable y = Atx. The fifth equality is a direct

consequence of the Time-Homogeneous Markov property of AtPt. The last equality

holds by definition, proving that free entry is indeed satisfied when P t decays at the

rate of technological progress.
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TECHNICAL APPENDIX

A Derivation of equations (1) and (4)

Let D denote the difficulty of the hashing problem, so that every computed hash will

lead to a valid block with probability 1/D. Consider a machine that performs on av-

erage a hash per period. Let (Tn, n ≥ 0) be a strictly increasing sequence of random

variables–T0 = 0 < T1 < ... < Tn, which measures the dates at which the machine has

generated a valid block. To keeps track of the number of mined blocks within [0, t], we

also introduce the counting process associated with Tn

Nt ≡
∑
n≥1

1{Tn≤t}, and N0 = 0.

The Poisson distribution is obtained breaking up each period into tiny intervals of

size δ, so that there is a very large number, n = 1/δ, of subintervals in each period.

The probability that the machine computes a hash in each subinterval is proportional

to their length δ. Hence, the probability that the machine generates a block in each

subinterval is equal to δ/D, and the machine will find k valid blocks in [0, t] with prob-

ability

P (Nt = k| F0) =

(
nt

k

)(
δ

D

)k (
1− δ

D

)nt−k
,

where Ft = σ (Ns, s ≤ t) is the filtration generated by Nt. Replacing n = 1/δ and

λ (x,D) ≡ x/D into the previous equation, we finally find that, when δ converges to

zero,

P (Nt = k| F0) =

(
t/δ

k

)
(λ (1, D) δ)k (1− λ (1, D) δ)t/δ−k

≈ (t/δ)k

k!
(λ (1, D) δ)k (1− λ (1, D) δ)t/δ

=
(λ (1, D) t)k

k!
(1− λ (1, D) δ)t/δ

≈ (λ (1, D) t)k

k!
e−λ(1,D)t.

Note that considering h units of hashpower simply rescale the Poisson arrival rate. The

memory-less property of the hashing problem implies that the number of computed

hashes per subintervals is equal to h/D instead of 1/D. Following the sames steps as

before, one finds that the Poisson arrival rate λ (h,D) = h/D.
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Having established that the probability of finding a block is captured by a Poisson

process, we now derive the flow revenues of miners. It is given by a compound pro-

cess whose jumps of random sizes are proportional to the exchange rateR. Hence, the

revenues generated in [0, t] read

Πt =
Nt∑
i=1

RTi =

∫ t

0

RsdNs.

Fix a t small enough such that the expectation of Πt is finite. Then we have

E0 [Πt] = E0

[∫ t

0

RsdNs

]

= E0

[∫ t

0

Rsλ (1, Ds) ds

]
−

=0︷ ︸︸ ︷
E0

[∫ t

0

Rs (λ (1, Ds) ds− dNs)

]
= E0

[∫ t

0

Rs

Ds

ds

]
,

where the third equality follows from the fact that the compensated process Mt ≡
Nt −

∫ t
0
λ (1, Ds) ds is a martingale–see Jeanblanc (2007), and that Rt and Mt are inde-

pendent. Finally, letting t converge to 0, we find that the flow payoff of the miner is

indeed equal to Pt = Rtλ (1, Dt) = Rt/Dt, as stated in eq. (1).

The value function of miners is by definition equal to

V (Rt, τ) = Et

[∑
i:Ti≥t

e−r(Ti−t)RTi

]
−
∫ ∞
t

e−r(s−t)Cτds

= Et
[∫ ∞

t

e−r(s−t)RsdNs

]
− Cτ

r
.

As before, we can use the martingale property of the compensated process Mt to ex-

press the expectation as a function of the payoff process. Following similar steps, we

find that

V (Rt, τ) +
Cτ
r

= Et
[∫ ∞

t

e−r(s−t)RsdNs

]

= Et
[∫ ∞

t

e−r(s−t)Rsλ (1, Ds) ds

]
−

=0︷ ︸︸ ︷
Et
[∫ ∞

t

e−r(s−t)Rs (λ (1, Ds) ds− dNs)

]
= Et

[∫ ∞
t

e−r(s−t)Psds

]
,

as stated in eq. (4). Note that since we cannot arbitrarily choose the upper-bound of

the integral, we also to need to make sure that the expectation is bounded. But this
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will hold true in equilibrium, as otherwise the investment process would violate free

entry.

B Entry rule during the first period

Figure 11 displays the simulated and observed payoffs series for our first period, along

with the Bitcoin/US Dollar exchange rate. As explained in the main text, the baseline

model fails to match the payoff series when the exchange rate suddenly increases. This

is particularly noticeable at the beginning of the first period. Yet the model with time-

to-build manages to correct this shortcoming and fir the data over the whole sample.

C Exchange rate data for Bitcoin

There is no single Bitcoin price as each exchange has its own exchange rate, which can

sometimes be significantly different from another exchange’s. The data we use in the

article comes from the blockchain information website Coindesk. To make sure that

we use high quality data, we compare them with the exchange rate series constructed

by Biais et al. (2018). They rely on the Kaiko dataset, and use all transaction prices from

17 major exchanges: Bitfinnex, bitFlyer, Bitstamp, Bittrex, BTCe, BTCChina, CEX.IO,

Coinbase-GDAX, Gatecoin, Gemini, hitBTC, Huobi, itBit, Kraken, Mt.Gox, OKCoin and

Quoine. Figure 12 plots the two series and shows that they are almost always super-

imposed.
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Figure 11: Simulated vs. Observed Payoffs
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Figure 12: Comparison of Exchange Rate Data

D Block generation rate

According to Assumption 1, the expected value of the block generation rate would al-

ways be equal to 10 minutes. Hence it implies that the daily number of generated

blocks should not be statistically different from 144. Figure 13 plots the daily number

of blocks found along with the two 95% confidence bounds. For our periods of inter-

est, the results are satisfying except for the beginning of the first period. According

to this graph, it is sensible not to consider the interval separating our two periods of

study. Then, due to the introduction of ASICs, technological progress was so fast that

the hashrate significantly exceeded the target of one block every ten minutes.

Figure 13: Number of Blocks Found per Day

Note: The number of blocks found per day has been retrieved from

coindesk.com.
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E Law-of-motion of block rewards

The GBM assumption implies that the log-increments of block reward should be both

independent and normally distributed. For all t ≥ 0, we have Rt = R0e

(
α−σ

2

2

)
t+σZt ,

where (Zt)t ≥ 0 is a standard Brownian motion. Hence we get

log

(
Rt+1

Rt

)
=

(
α− σ2

2

)
+ σ (Zt+1 − Zt) .

According to the definition of Brownian motions, Zt+1 − Zt should follow a N (0, 1)

distribution, independent from Zs+1−Zs for all s 6= t. Letting µ = α−σ2/2, we see that

the log-increments, log
(
Rt+1

Rt

)
, are i.i.d and follow aN (µ, σ2) distribution.

Figure 14 compares the nonparametrically estimated density of log-increments with

their normal density estimated by maximum likelihood under the GBM assumption.

It show that if we exclude tail events by discarding the 5% most extreme increments

on each side, the empirical distribution is well approximated by a normal distribu-

tion. Hence although log-increments are most of the time normally distributed, they

exhibit fat-tails as often observed with financial data.

Figure 14: Normality of Log-Increments

Note: Estimation of log-increments excluding tail events.

As for the independence property, Figure 15 shows that log-increments are not lin-

early autocorrelated. We obtain similar results composing the log-increments with

non-linear functions. However, statistical tests indicate that the variance of the block

rewards does not remain constant over time, and goes instead through periods of high

and low volatility. Although the issue is strongly alleviated by our division of the sam-

ple into two subperiods, it suggests that a more realistic specification should allow the

variance coefficient σ to vary over time. We leave this extension to further research be-
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cause it would render the entry barrier state dependent, and thus greatly complicates

the characterization of the equilibrium.

Figure 15: Independence of Log-Increments

Note: This autocorrelogram has been obtained using the second pe-

riod log-increments.

F Estimation of Q

The network’s hashrate (Qt)t≥0 is not observable but can be estimated using a two-

step procedure. First, for each day t, let Q̂t ≡ Nt/Π̃t, where Nt is the number of blocks

found for day t and Π̃t is the probability to find a valid block with a single hash. Both

are directly observable in the blockchain. Since Nt follows the binomial distribution

with parameters Qt and Π̃t, Q̂t is a very natural estimator of the daily hashrate. This

estimator is non biased and it can easily be shown that it is asymptotically equivalent

to the maximum likelihood estimator. Given that there is a lot of variation across daily

estimates, we smooth this new time series using a local linear regression. Figure 16

shows that we are not losing much information performing a local linear regression

over Q̂.

The two green curves are confidence bounds for the first step estimation if the true

(log (Q)t)t≥0 were the red curve (the second step estimate). If the erratic variations

of the first step estimation captured not only the first step estimation variance, but

also some real variations of the hashrate not captured by the second step estimation,
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then its variance should be bigger than the one resulting from the first step estimation

error only. Thus it should cross the green bounds much more often than 5% of the

time, which does not happen in our data. For the sake of clarity, we do not show the

whole series but the test works very well over the whole period.

Figure 16: Estimation of Network’s Hashrate Q

G Block bootstrap

Since our data are time series, we resort to block bootstrap to estimate the standard

deviations of our estimates. We follow the following procedure. Then, we compute

the returns dR and dQ of the series R and Q. Second, we divide those series of returns

into blocks. A bootstrap random draw consists in the drawing with replacement of a

series of blocks, which has the same length as the series observed in the data. For in-

stance, if we divide our data in five blocks [1|2|3|4|5], then [2|4|2|3|4] or [5|5|2|1|5] could

be bootstrap series. For a bootstrap draw b, we then obtain two series dRb and dQb.

Starting with fixed initial values forR andQ, we create seriesRb andQb from the series

of returns. Note that applying the bootstrap procedure on R and Q directly instead of

the series of returns would not make any sense since the two series are not station-

ary. We finally estimate the parameters using our minimization procedure, with Rb

andQb as input, and repeat the drawing and estimation 100 times in order to estimate

the parameters’ standard deviations. It is important to note that for a given change in

the exchange rate, miners’ behavior crucially depends on how far P is from the bar-

rier. As a result, for our procedure to make sense (that is to say, to create bootstrap
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series which could have happened in the real life), the ratio of P and the barrier must

have the same value at the beginning of each block. We pick our blocks under this

constraint.

H Out-of-sample experiments

We assess the model’s ability to match out-of-sample data by dividing the second pe-

riod into a fit period and a test period. We calibrate a and P 0 on the fit period only

and find that, even when the fit period is short, the calibrated values remain close to

the ones based on the full sample. Hence, as illustrated in Figure 17, the predicted

hashrate stays accurate several years after the end of the fit period.

Figure 17: Out-of-Sample Experiment

Note: The fit period is the shortest one for which the overall fit re-

mains accurate.

Note, however, that out-of-sample tests are much less conclusive for the first period

because the hashrate increases only at the beginning and at the end of that period.

Hence, if we split the first data sample into a fit and a test period, the payoffs do not

hit the reflecting barrier often enough to deliver a reliable calibration.
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I Fully reversible investments

During the first subperiod, miners do not use specific mining hardware. Hence, the

assumption that their investment is irreversible is less obvious than for our second

period. To assess its accuracy, we estimate here a model with fully reversible invest-

ment. Figure 18 shows that the hashrate predicted by the reversible model fail to fits

the data.

Figure 18: Model with Totally Irreversible Investment

Note: Reversible model simulated under the free entry assumption.

Since miners break even, payoffs are always set equal to the opera-

tional costs.
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J Derivation of payoffs density f e

Lemma 1. Let Assumptions 1, 2, 4 and 7 hold true. Then, for all t > 0, the density of Pt
conditional on the barrier being reached at time τ < t reads

f e
Pt|Pτ=P τ (x) =

(
1

x

)
(

1

σ
√
t

)
φ

 log(P τ )− log(x) +
(
α− σ2

2

)
t

σ
√
t


+ exp

[(
log(P τ )− log(x)− at

)(
1− 2

(
a+ α

σ2

))]

×

(2

(
a+ α

σ2

)
− 1

)
Φ

 log(x)− log(P τ ) +
(

2a+ α− σ2

2

)
t

σ
√
t


+

(
1

σ
√
t

)
φ

 log(x)− log(P τ ) +
(

2a+ α− σ2

2

)
t

σ
√
t

1]0,P t]
(x),

where φ and Φ are the density and the cumulative distribution function of the standard

normal distribution, respectively.

Proof. Since Assumption 7 implies Assumption 6, Proposition 3 applies and we know

that there exists a P 0 such that (Pt, P t = P 0/At) is an industry equilibrium. Moreover,

Assumption 7 also implies that the anticipatedPt follows a GBM whenPt < P t because

the hashrateQt remains constant. Hence the anticipated Pt follows a GBM reflected at

P 0/At. The density of a positive Brownian motion reflected at 0 and which starts at 0

is given in Harrison (2013). We now show that it can be applied to the logarithm of P .

Without loss of generality, we can set the hitting time τ = 0. Then R0/Q0 = P 0

because we are looking for a density conditional on P0 = P 0. Hence the hashrate Qt

is given by Qt = sup
0≤s≤t

AsRs/P 0. Replacing this expression into the decomposition of

AtPt, we find that

log(AtPt) = log(AtRt)− log(Qt)

= log(AtRt)− sup
0≤s≤t

log(AsRs) + log(P 0)

= log(P 0)−
[
− log(AtRt)− inf

0≤s≤t
(− log(AsRs))

]
= log(P 0)− Zt,

where Zt follows a positive Brownian motion with parameters (σ2/2− a− α, σ), re-

flected at 0 and with initial condition Z0 = 0. We know from Harrison (2013) that, for
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all x ≥ 0, Pr (Zt ≤ x) = Φ

(
x−
(
σ2

2
−a−α

)
t

σ
√
t

)
− e

2

(
σ2

2 −a−α
)
x

σ2 Φ

(
−x−

(
σ2

2
−a−α

)
t

σ
√
t

)
. Straightfor-

ward differentiation of this expression yields the solution for f e.

K Price of mining hardware

Name of rig available on hashpower (Th/s) power (Watts) price ($)

Bitmain S1
2013/12/01 0.18 360 300

https://en.bitcoin.it/wiki/Mining_hardware_comparison

Bitmain S2
2014/04/01 1 1100 2260

https://en.bitcoin.it/wiki/Mining_hardware_comparison

Bitmain S3
2014/07/01 0.441 340 382

https://en.bitcoin.it/wiki/Mining_hardware_comparison

Bitmain S4
2014/10/01 2 1400 1400

https://en.bitcoin.it/wiki/Mining_hardware_comparison

Bitmain S5
2015/01/01 1.15 590 370

https://en.bitcoin.it/wiki/Mining_hardware_comparison

Bitmain S7
2015/09/01 4.86 1210 1823

https://en.bitcoin.it/wiki/Mining_hardware_comparison

Bitmain S9
2016/08/01 14 1375 2400

https://en.bitcoin.it/wiki/Mining_hardware_comparison

Bitmain S9
2018/01/01 14 1375 5179

https://camelcamelcamel.com/Antminer-S9-~13TH-Bitcoin-12-1600/product/B01LX6EVNI

Pangolin M10
2018/07/24 33 2150 2000

https://bitcointalk.org/index.php?topic=4737927.0

Pangolin M20
2019/05/20 48 2300 1450

https://bitcointalk.org/index.php?topic=5120959.0
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Figure 19: Price Data for Mining Rigs

L Model with time-to-build

The characterization of the equilibrium with time-to-build is borrowed from Grenadier

(2000). We outline the logic of the proof and refer readers to the paper for more de-

tails. The first step of the proof consists in showing that the equilibrium can be derived

solving the problem of a single agent that maximizes a "fictious" objective function. As

in Lucas and Prescott (1971), the decentralized equilibrium maximizes social welfare.

Hence it can also be derived as an optima from the social planner’s perspective.

Equivalence between central planner and decentralized solutions. Our first task is

to define the objective function. The flow benefits are equal to the area under the pay-

off functions of miners so that B (R,Q) =
∫ Q
0
P (R, x) dx =

∫ Q
0

(R/x) dx = R log(Q).

Since the central planner seeks to maximize benefits net of costs, he solves the follow-

62



ing problem

J (Rt, Qt, t) = max
{Qs}s>t

Et
[∫ ∞

t

e−r(s−t)
([
B (Rs, Qs)−

∫ s

0

CτdQτ

]
ds− IsdQs

)]
= max

{Qs}s>t
Et
[∫ ∞

t

e−r(s−t)
([
B (Rs, Qs)− C0

∫ s

0

e−aτdQτ

]
ds− e−asI0dQs

)]
= max

{Qs}s>t
Et
[∫ ∞

t

e−r(s−t)
(
Rs log(Qs)ds− e−as

(
I0 +

C0

r

)
dQs

)]
.

Defining Kt ≡ e−at
(
I0 + C0

r

)
allows us to rewrite the objective function as

J (Rt, Qt, Kt) = max
{Qs}s>t

Et
[∫ ∞

t

e−r(s−t) (Rs log(Qs)ds−KsdQs)

]
Hence the value function of the planner satisfies the following differential equation

rJ (Rt, Qt,Kt) = Rt log(Qt) + αRtJR (Rt, Qt,Kt) +
σ2R2

t

2
JRR (Rt, Qt,Kt)− aKtJK (Rt, Qt,Kt) , (16)

subject to the value matching and smooth-pasting conditions

∂J
(
R(Q,K), Q,K

)
∂Q

= K,

∂J
(
R(Q,K), Q,K

)
∂Q∂R

= 0.

Since (16) holds identically along the optimal path, we can differentiate it with respect

to Q to obtain

rj (Rt, Qt, Kt) =
Rt

Qt

+ αRtjR (Rt, Qt, Kt) +
σ2R2

t

2
jRR (Rt, Qt, Kt)− aKtjK (Rt, Qt, Kt) ,

where j (R,Q,K) ≡ ∂J (R,Q,K) /∂Q denotes the marginal value of mining capacity.

The boundary conditions above are therefore equivalent to

j
(
R(Q,K), Q,K

)
= K,

∂j
(
R(Q,K), Q,K

)
∂R

= 0.

The differential equation and boundary conditions are verified when (i) R(Q,K) =

DQK, for a constant D that is yet to be determined; and (ii) j reads

j (Rt, Qt, Kt) =
Rt/Qt

r − α
−
[

DKt

β(r − α)

](
Rt/Qt

DKt

)β
, (17)

where β is the positive root of the quadratic equation

Q(β) ≡ σ2

2
β(β − 1) + (α + a)β − a− r = 0,

and the constant D = (r − α)β/ (β − 1) . Replacing Pt = Rt/Qt, Kt = K0/At and P t =

DKt into (17), we find that the optimal investment strategy of the planner is identical

to the entry rule of the decentralized equilibrium.

63



Industry dynamics with time-to-build. Having shown that we can use a central plan-

ner to solve for the equilibrium, we now introduce time-to-build. There is an exoge-

nous delay δ between the time a new unit of hashpower is ordered and when it be-

come operational. Let Nt denote the number of units that are currently in the delivery

pipeline because their purchase order occurred within (t− δ, t], and let Ht = Qt + Nt

denote the "committed hashpower" at date t.

The state of the economy is summarized by the following vector

Ωt = {Rt, Kt, Qt, Nt,Λt} , where Λt ≡ {s ∈ (t− δ, t] : Qt > Qt−} .

The set Λt records all the dates at which hashpower has been committed within the

current delivery window (t− δ, t] . Note that the investment cost Kt has to be adjusted

to take into account the delivery delay so that Kt = e−at
[
I0 + e−rδC0/r

]
. Since Qt =

Ht−δ, B (Rt, Qt) = Rt log(Ht−δ) and the planner solves the following problem

Jδ (Rt, Kt, Qt, Nt,Λt)

= Et
[∫ t+δ

t

e−r(s−t)Rs log(Hs−δ)ds

∣∣∣∣Rt, Kt, Qt, Nt,Λt

]
+ max
{Hs}s>t

Et
[∫ ∞

t+δ

e−r(s−t) (Rs log(Hs−δ)ds−KsdHs)

∣∣∣∣Rt, Kt, Qt, Nt,Λt

]
= Et

[∫ t+δ

t

e−r(s−t)Rs log(Hs−δ)ds

∣∣∣∣Rt, Kt, Qt, Nt,Λt

]
+ max
{Hs}s>t

Et
[∫ ∞

t+δ

e−r(s−t) (Rs log(Hs−δ)ds−KsdHs)

∣∣∣∣Rt, Kt, Ht, 0, ∅
]

= Jδ (Rt, Kt, Ht, 0, ∅)

+Et
[∫ t+δ

t

e−r(s−t)Rs log(Qs−δ)ds

∣∣∣∣Rt, Kt, Qt, Nt,Λt

]
−Et

[∫ t+δ

t

e−r(s−t)Rs log(Qs−δ)ds

∣∣∣∣Rt, Kt, Ht, 0, ∅
]
. (18)

The second equality holds because the flow surplus at date t + δ only depends on the

amount of committed hashpower Ht. Hence the optimized paths are identical un-

der Ωt = {Rt, Kt, Qt, Nt,Λt} and under the assumption that all units currently in the

pipeline are delivered, so that Ω̃t = {Rt, Kt, Qt +Nt, 0, ∅} = {Rt, Kt, Ht, 0, ∅}. The last

equality follows from the definition of Jδ. Note that the last two terms in (18) are be-

yond the control of the planner at time t.Hence he seeks to maximize Jδ (Rt, Kt, Ht, 0, ∅) which

we denote by V δ (Rt, Ht, Kt).

Over the range in which Ht remains constant, V δ (Rt, Ht, Kt) can be interpreted as

the value of an industry withHt completed units yielding a dividend flow ofRt log(Ht).
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Hence the value function in the no-investment region satisfies the differential equa-

tion

rV δ (Rt, Ht, Kt) = Rt log(Ht)+αRtV
δ
R (Rt, Ht, Kt)+

σ2R2
t

2
V δ
RR (Rt, Ht, Kt)−aKtV

δ
K (Rt, Ht, Kt) .

Since the HJB equation is the same as that of the problem without delay (16), its deriva-

tive with respect to installed capacity, vδ (R,H,K) ≡ ∂V δ (R,H,K) /∂H, also admits a

solution of the form

vδ (Rt, Ht, Kt) =
Rt/Ht

r − α
+D (Ht, Kt)R

β
t . (19)

Let R
δ
(H,K) denote the level of Rt at which market entry is optimal. Then the value-

matching condition reads

V δ
(
R
δ
(H,K), H,K

)
= Jδ

(
R
δ
(H,K), K,H, dH, ∅

)
−KdH

= V δ
(
R
δ
(H,K), H + dH,K

)
−KdH

+E
[∫ δ

0

e−rtRt log(H)dt

∣∣∣∣R0 = R
δ
(H,K)

]
−E

[∫ δ

0

e−rtRt log(H + dH)dt

∣∣∣∣R0 = R
δ
(H,K)

]
.

Differentiating this condition yields

vδ
(
R
δ
(H,K), H,K

)
=
R
δ
(H,K)/H

r − α
[
1− e−(r−α)δ

]
+K. (20)

The optimal value of R
δ

follows from the smooth-pasting condition

∂vδ
(
R
δ
(H,K), H,K

)
∂R

=
1− e−(r−α)δ

H (r − α)
. (21)

Combining (20) and (21) with the general solution (19), yields the following solution

vδ (Rt, Ht, Kt) =
Rt/Ht

r − α
−
[
DKte

−(r−α)δ

β(r − α)

](
Rt/Ht

DKt

)β
,

where β is the positive root of the quadratic equation

Q(β) ≡ σ2

2
β(β − 1) + (α + a)β − a− r = 0,

and the constant D reads

D =
β(r − α)

(β − 1) e−(r−α)δ
.

Finally, dividing the block rewards R by H yields the expression of the reflecting bar-

rier, which is indeed decreasing at the rate of technological progress since

P
δ

t =
R
δ
(Ht, Kt)

Ht

=
β(r − α)

(β − 1) e−(r−α)δ
Kt = e−atP

δ

0.
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M Model with convex adjustment costs

Let qt denote investment in hashpower so that Qt = Q0 +
∫ t
0
qsds. Using c (q,Q,K)

to denote the overall entry costs as a function of q, the planner’s value function must

satisfy the following HJB equation

rJ (Rt, Qt, Kt) = max
qt
{Rt log(Qt)− c (qt, Qt, Kt) + qtJQ (Rt, Qt, Kt)}

+αRtJR (Rt, Qt, Kt) +
σ2R2

t

2
JRR (Rt, Qt, Kt)− aKtJK (Rt, Qt, Kt) .(22)

We assume that

c (q,Q,K) =

 Kq
[
1 +

(
q
Q

)η]
, with η > 1, for q ≥ 0,

g (q) > 0, with g′ (q) > 0, for q < 0.

As in Abel and Eberly (1997), assuming that reducing Q has a positive cost effectively

ensures that investment is irreversible. Hence we have

qt = max

{
0,

(
j (Rt, Qt, Kt) /Kt − 1

1 + η

) 1
η

Qt

}
, (23)

where j (Rt, Qt, Kt) ≡ JQ (Rt, Qt, Kt) .

The HJB equation (22) can be differentiated with respect to Q since it holds identi-

cally. Hence the shadow value of of Q satisfies the following HJB

rj (Rt, Qt, Kt) =
Rt

Qt

− cQ (qt, Qt, Kt) + q (j (Rt, Qt, Kt) , Qt, Kt) jQ (Rt, Qt, Kt)

+αRtjR (Rt, Qt, Kt) +
σ2R2

t

2
jRR (Rt, Qt, Kt)− aKtjK (Rt, Qt, Kt)

+[j (Rt, Qt, Kt)− cq (qt, Qt, Kt)]︸ ︷︷ ︸
=0 if qt>0

qj (j (Rt, Qt, Kt) , Qt, Kt)︸ ︷︷ ︸
=0 if qt=0

jQ (Rt, Qt, Kt) .(24)

In order to reduce the state space, we guess that j (R,Q,K) = Kj
(

R
QK

, 1, 1
)

. We

now verify that this conjecture is indeed correct by proving that it satisfies the HJB

equation. Readers interested in a more systematic analysis can read Lemma 2 below,

where we prove that j is homogenous of degree zero in (R,Q), and homogenous of
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degree one in (R,K). Since j (R,Q,K) = Kj
(

R
QK

, 1, 1
)

, it must hold true that

jR (R,Q,K) =
1

Q
j1

(
R

QK
, 1, 1

)
,

jRR (R,Q,K) =
1

Q2K
j1

(
R

QK
, 1, 1

)
,

jQ (R,Q,K) = − R

Q2
j1

(
R

QK
, 1, 1

)
,

jK (R,Q,K) = j

(
R

QK
, 1, 1

)
− R

QK
j1

(
R

QK
, 1, 1

)
.

Replacing the four conditions above into the HJB equation (24) yields

rj (Rt, Qt,Kt) =
Rt

Qt
+Ktη

(
q (Rt, Qt,Kt)

Qt

)1+η

+ α
Rt

Qt
j1

(
Rt

QtKt
, 1, 1

)
+

σ2R2
t

2Q2
tKt

j11

(
Rt

QtKt
, 1, 1

)
−aKt

[
j

(
Rt

QtKt
, 1, 1

)
−

Rt

QtKt
j1

(
Rt

QtKt
, 1, 1

)]
− q

(
Rt

QtKt
, 1, 1

)
Qt

[
Rt

Q2
t

j1

(
Rt

QtKt
, 1, 1

)]
, (25)

where we have used the fact that

q (Rt, Qt, Kt) =

(
j (Rt, Qt, Kt) /Kt − 1

1 + η

) 1
η

Qt

=

j
(

Rt
QtKt

, 1, 1
)
− 1

1 + η


1
η

Qt

= q

(
Rt

QtKt

, 1, 1

)
Qt.

Replacing j (Rt, Qt, Kt) with Ktj
(

Rt
QtKt

, 1, 1
)

on the left-hand side of (25), and dividing

by Kt, yields an equation that depends on Rt/ (QtKt) only

rj

(
Rt
QtKt

, 1, 1

)
=

Rt
QtKt

+ ηq

(
Rt
QtKt

, 1, 1

)1+η

+ α
Rt
QtKt

j1

(
Rt
QtKt

, 1, 1

)
+
σ2

2

(
Rt
QtKt

)2

j11

(
Rt
QtKt

, 1, 1

)
−a
[
j

(
Rt
QtKt

, 1, 1

)
− Rt
QtKt

j1

(
Rt
QtKt

, 1, 1

)]
− Rt
QtKt

q

(
Rt
QtKt

, 1, 1

)
j1

(
Rt
QtKt

, 1, 1

)
.

We have derived an ODE that only depends onRt/ (QtKt) and which solves the orig-

inal PDE while satisfying the optimality condition for investment. Replacing q with its

expression in (23) and using xt to denote Rt/ (QtKt), we finally obtain the simplified

HJB equation

(r + a) j̃ (xt) =

 xt + η
(
j̃(xt)−1
1+η

) 1+η
η

+

(
α + a−

[
j̃(xt)−1
1+η

] 1
η

)
xtj̃
′ (xt) + σ2

2
x2t j̃
′′ (xt) , when j̃ (xt) ≥ 1,

xt + (α + a)xtj̃
′ (xt) + σ2

2
x2t j̃
′′ (xt) , when j̃ (xt) < 1.
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For our calibration, we generalize the cost function to take into account the distinc-

tion between the investment and the operating costs. More precisely, we assume that,

as in the body of the paper, the marginal costs of entry are given by

I (q,Q,A) =
I0
A

[
1 +

(
q

bQ

)η]
, for q ≥ 0.

Then the overall entry costs read

c (qt, Qt, Kt) =

∫ qt

0

I (y,Qt, Kt) dy + qt
Ct
r

= Ktqt

[
1 +

(
qt

b̃Qt

)η]
,

where Kt = (I0 + C0/r) /At = e−at (I0 + C0/r) /A0, and b̃ ≡ b
[
(1+η)K0

I0

]1/η
. Given that the

optimal entry flow solves

q (Rt, Qt, Kt) = max

{
0,

(
j (Rt, Qt, Kt) /Kt − 1

1 + η

) 1
η

b̃Qt

}
,

the HJB is now equivalent to

(r + a) j̃ (xt) =

 xt + ηb̃
(
j̃(xt)−1
1+η

) 1+η
η

+

(
α + a−

[
j̃(xt)−1
1+η

] 1
η
b̃

)
xtj̃
′ (xt) + σ2

2
x2t j̃
′′ (xt) , when j̃ (xt) ≥ 1,

xt + (α + a)xtj̃
′ (xt) + σ2

2
x2t j̃
′′ (xt) , when j̃ (xt) < 1.

(26)

We use a finite-difference method to approximate the HJB equation, using the value

function with linear costs as our starting guess. We rely on the implicit Euler scheme

in order to ensure that the approximation is stable. The system of linearized equa-

tions is solved using a generalization of the Gauss-Seidel iterative method known as

the successive-over-relaxation method. Solving for j yields the investment rate q as

a function of P , as well as the marginal costs of investment cq. As for the baseline

model, we use the policy function to simulate the trajectory of the network hashrate

and also that of the investment costs. The empirical moments are summarized by

the vector m̂ which contains the actual hashrate of the network and the online price

series described in the Technical Appendix K. Using m(υ) to denote the simulated mo-

ments generated by the vector of parameters υ ≡ {a, η, b}, we compute the quadratic

distances d(υ) ≡ (m(υ)− m̂) Ω (m(υ)− m̂), where Ω is a weighting matrix that places

equal weight on the hashrate and price data. Our calibrated vector υ̂ = arg minυ∈R3
+
d(υ).

Figure 20 illustrates the convergence of our numerical procedure. It reports the

simulated value function j̃ after different number of iterations. One can see that after
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Figure 20: Convergence of Numerical Solution
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Note: Simulated solutions of the HJB equation (26) at different num-

bers of iterations.

Figure 21: Policy Function
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Note: Calibrated policy function of the model with convex adjust-

ment costs.

69



400 iterations, the incremental changes in the value function are negligible, especially

if one focuses on the region around the investment threshold j̃(x) = 1. The policy

function q(x) of the calibrated model is reported in Figure 21. Aggregate investment is

nearly vertical at the entry barrier x, but is prevented from reaching an infinite inten-

sity, as would be the case under linear costs, by the convexity of the adjustment cost

function.

We conclude our analysis of the model with convex costs with a Lemma that proves

the validity of the normalization j (R,Q,K) = Kj
(

R
QK

, 1, 1
)

.

Lemma 1. The shadow value of capital j (Rt, Qt, Kt) is homogenous of degree zero in

(Rt, Qt), and homogenous of degree one in (Rt, Kt), i.e. j (λRt, λQt, Kt) = j (Rt, Qt, Kt)

and j (λRt, Qt, λKt) = λj (Rt, Qt, Kt) for all λ > 0.

Proof. Let q∗· (Rt, Qt, Kt) = {q∗s (Rs, Qs, Ks)}s≥t denote the optimal investment path

starting at (Rt, Qt, Kt) .Consider a planner which faces the initial condition (λRt, λQt, Kt)

where λ > 0, and implements the investment strategy qλ· = λq∗· (Rt, Qt, Kt). Then the

hashpower resulting from qλ· satisfies

Qλ
s = λQt +

∫ t

s

qλτ dτ = λ

[
Qt +

∫ t

s

q∗τdτ

]
= λQ∗s, for all s ≥ t.

Moreover, since Rt follows a geometric Brownian motion

Pr {Rs ≤ x|Rt} = Pr {λRs ≤ λx|λRt} , for all s > t and all x ∈ R+,

we have

V λ (λRt, λQt, Kt) = Et

[∫ ∞
t

e−r(s−t)

(
λRs

λQ∗s
−
∂c
(
qλs , Q

λ
s , Ks

)
∂Qs

)
ds

]

= Et

[∫ ∞
t

e−r(s−t)

(
Rs

Q∗s
− ηKt

(
q∗s
Q∗s

)1+η
)
ds

]

= Et
[∫ ∞

t

e−r(s−t)
(
Rs

Q∗s
− ∂c (q∗s , Q

∗
s, Ks)

∂Qs

)
ds

]
= j (Rt, Qt, Kt) ,

where the second equality follows from cQ
(
qλs , Q

λ
s , Ks

)
= Ksη (λq∗s/ (λQ∗s))

1+η, while the

third equality holds because q∗· is the optimal investment policy given (Rt, Qt, Kt) . The

mimicking strategy qλ· being one of the many feasible strategies, it must be the case

that j (λRt, λQt, Kt) ≥ V λ (λRt, λQt, Kt) = j (Rt, Qt, Kt).
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The reverse inequality is established considering a planner which faces the initial con-

dition (Rt, Qt, Kt) but implements the investment strategy q1/λ· = q∗· (λRt, λQt, Kt) /λ.

The same derivations as before yieldsj (Rt, Qt, Kt) ≥ V 1/λ (Rt, Qt, Kt) = j (λRt, λQt, Kt).

Putting the two inequalities together, we finally obtain j (λRt, λQt, Kt) = j (Rt, Qt, Kt) .

The proof for the homogeneity in (Rt, Kt) follows a similar logic. Consider a planner

which faces the initial condition (λRt, Qt, λKt) and implements the optimal strategy

q∗· (Rt, Qt, Kt) of a planner facing (Rt, Qt, Kt) . Since both planners share the same ini-

tial hashpower and invest the same quantities, Qs = Q∗s for all s ≥ t. The expected

returns of this strategy are

V (λRt, Qt, λKt) = Et
[∫ ∞

t

e−r(s−t)
(
λRs

Qs

− ∂c (qs, Qs, Ks)

∂Qs

)
ds

∣∣∣∣ qs = q∗s (Rt, Qt, Kt)

]
= Et

[∫ ∞
t

e−r(s−t)

(
λRs

Q∗s
+ λKsη

(
q∗s
Q∗s

)1+η
)
ds

]
= λj (Rt, Qt, Kt) ,

which implies in turn that j (λRt, Qt, λKt) ≥ V (λRt, Qt, λKt) = λj (Rt, Qt, Kt) . Homo-

geneity is again established considering the reverse situation where a planner which

faces the initial condition (Rt, Qt, Kt) implements q∗· (λRt, Qt, λKt) so that

V (Rt, Qt, Kt) = Et
[∫ ∞

t

e−r(s−t)
(
Rs

Qs

− ∂c (qs, Qs, Ks)

∂Qs

)
ds

∣∣∣∣ qs = q∗s (λRt, Qt, λKt)

]
=

1

λ
Et

[∫ ∞
t

e−r(s−t)

(
λRs

Q∗s
+ λKsη

(
q∗s
Q∗s

)1+η
)
ds

]
=

1

λ
j (λRt, Qt, λKt) .

Since j (Rt, Qt, Kt) ≥ V (Rt, Qt, Kt) = j (λRt, Qt, λKt) /λ, combining the two inequali-

ties yields the required homogeneity j (λRt, Qt, λKt) = λj (Rt, Qt, Kt) .
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